The solid-state structural analysis and docking studies of three adamantane-linked 1,2,4-triazole derivatives are presented. Crystal structure analyses revealed that compound 2 crystallizes in the triclinic P-1 space group, while compounds 1 and 3 crystallize in the same monoclinic P21/c space group. Since the only difference between them is the para substitution on the aryl group, the electronic nature of these NO2 and halogen groups seems to have no influence over the formation of the solid. However, a probable correlation with the size of the groups is not discarded due to the similar intermolecular disposition between the NO2/Cl substituted molecules. Despite the similarities, CE-B3LYP energy model calculations show that pairwise interaction energies vary between them, and therefore the total packing energy is affected. HOMO-LUMO calculated energies show that the NO2 group influences the reactivity properties characterizing the molecule as soft and with the best disposition to accept electrons. Further, in silico studies predicted that the compounds might be able to inhibit the 11β-HSD1 enzyme, which is implicated in obesity and diabetes. Self- and cross-docking experiments revealed that a number of non-native 11β-HSD1 inhibitors were able to accurately dock within the 11β-HSD1 X-ray structure 4C7J. The molecular docking of the adamantane-linked 1,2,4-triazoles have similar predicted binding affinity scores compared to the 4C7J native ligand 4YQ. However, they were unable to form interactions with key active site residues. Based on these docking results, a series of potentially improved compounds were designed using computer aided drug design tools. The docking results of the new compounds showed similar predicted 11β-HSD1 binding affinity scores as well as interactions to a known potent 11β-HSD1 inhibitor.
2-Methyl-3-(2-methylphenyl)but-1-ene-1,1-dicarbonitrile (MMBD) has been synthesized from 3-(o-tolyl)butan-2-one. The crystal and molecular structure of this compound was solved by X-ray diffraction, with estimated standard deviations ≤ � 0.005 Ǻ for bond lengths, and ≤ 0.3° for bond angles. Intramolecular interactions of the C≡N group, i.e. of the C-H...N, C-H...π (electrons) and C-H...C type, were observed, and the possibility of weak intramolecular hydrogen bridges in the molecule of MMBD was considered. The geometry of the MMBD molecule from AM1 calculations was compared with the X-ray structure.
In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromofluorophenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the molecules are linked by weak C—H...π(phenyl) interactions, forming supramolecular chains extending along the c-axis direction. The crystal packing is further consolidated by intermolecular N—H...S hydrogen bonds and by weak C—H...S interactions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.