Water-supply companies monitor the state of their pipe networks and ensure that the pipes are clean and free of inert loose deposits by flushing and pigging. Flushing involves forcing high speed water through the pipes so as to carry away particulates, pigging consists of forcing an object (the pig) through the pipe so as to push or wipe away the loose material. Both systems have drawbacks; the first tends to use very large volumes of water, and it may be impossible to get the required velocities in large-diameter pipes. The second requires purpose built launch and receive stations and may run the risk of damaging the pipe walls. This paper presents an innovative alternative to water flushing or conventional pigging for the potable-water-supply industry. This alternative uses a phase change material (ice-water slurry), which can be introduced into and removed from existing pipe networks with minimal alterations. The underlying concept is that when an ice slurry is propelled through pipes at modest speeds, the wall shear is two to four orders of magnitude higher than that which would have been achieved had water (only) been travelling in the pipe at the same speed. Thus, even with relatively low speeds, the 'ice pig' is able to achieve efficient cleaning and removal of loose materials. This technology has the advantage that the ice pig changes its shape to fit the containing topology, hence it is able to navigate bends, contraction/expansions and partly open vales, while cleaning the containment walls and transporting particulates. Lastly, the ice pig is guaranteed never to get stuck, as it will simply melt away, if left for sufficient time.The paper presents laboratory experimental data, qualitatively demonstrating the capability of the technique and quantitative data enabling engineers to scale and size the ice pig for full scale trials. Finally, preliminary work from full scale trails on live water trunk mains is briefly presented and discussed.
Populations of Afro‐Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on‐site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model‐accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first‐year survival, which led to a projected population growth rate (λ) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated λ was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, most temporal variation in λ was due to variation in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First‐year survival also appeared low, however this result is potentially confounded by high natal dispersal. First‐year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.