The hearing sense on a mobile robot is important because it is omnidirectional and it does not require direct line-of-sight with the sound source. Such capabilities can nicely complement vision to help localize a person or an interesting event in the environment. To do so the robot auditory system must be able to work in noisy, unknown and diverse environmental conditions. In this paper we present a robust sound source localization method in three-dimensional space using an array of 8 microphones. The method is based on time delay of arrival estimation. Results show that a mobile robot can localize in real time different types of sound sources over a range of 3 meters and with a precision of 3 • .
Other than from its sensing and processing capabilities, a mobile robotic platform can be limited in its use by its ability to move in the environment. Legs, tracks and wheels are all efficient means of ground locomotion that are most suitable in different situations. Legs allow to climb over obstacles and change the height of the robot, modifying its viewpoint of the world. Tracks are efficient on uneven terrains or on soft surfaces (snow, mud, etc.), while wheels are optimal on flat surfaces. Our objective is to work on a new concept capable of combining different locomotion mechanisms to increase the locomotion capabilities of the robotic platform. The design we came up with, called AZIMUT, is symmetrical and is made of four independent leg-track-wheel articulations. It can move with its articulations up, down or straight, allowing the robot to deal with three-dimensional environments. AZIMUT is also capable of moving sideways without changing its orientation, making it omnidirectional. By putting sensors on these articulations, the robot can also actively perceive its environment by changing the orientation of its articulations. Designing a robot with such capabilities requires addressing difficult design compromises, with measurable impacts seen only after integrating all of the components together. Modularity at the structural, hardware and embedded software levels, all considered concurrently in an iterative design process, reveals to be key in the design of sophisticated mobile robotic platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.