Quantum state tomography is both a crucial component in the field of quantum information and computation, and a formidable task that requires an incogitable number of measurement configurations as the system dimension grows. We propose and experimentally carry out an intuitive adaptive compressive tomography scheme, inspired by the traditional compressed-sensing protocol in signal recovery, that tremendously reduces the number of configurations needed to uniquely reconstruct any given quantum state without any additional a priori assumption whatsoever (such as rank information, purity, etc) about the state, apart from its dimension.
We construct optimal measurements, achieving the ultimate precision predicted by quantum theory, for the simultaneous estimation of centroid, separation, and relative intensities of two incoherent point sources using a linear optical system. We discuss the physical feasibility of the scheme, which could pave the way for future practical implementations of quantum inspired imaging.
We perform several numerical studies for our recently published adaptive compressive tomography scheme [D. Ahn et al. Phys. Rev. Lett. 122, 100404 (2019)], which significantly reduces the number of measurement settings to unambiguously reconstruct any rank-deficient state without any a priori knowledge besides its dimension. We show that both entangled and product bases chosen by our adaptive scheme perform comparably well with recently-known compressed-sensing element-probing measurements, and also beat random measurement bases for low-rank quantum states. We also numerically conjecture asymptotic scaling behaviors for this number as a function of the state rank for our adaptive schemes. These scaling formulas appear to be independent of the Hilbert space dimension. As a natural development, we establish a faster hybrid compressive scheme that first chooses random bases, and later adaptive bases as the scheme progresses. As an epilogue, we reiterate important elements of informational completeness for our adaptive scheme.
The characterization of quantum processes, e.g. communication channels, is an essential ingredient for establishing quantum information systems. For quantum key distribution protocols, the amount of overall noise in the channel determines the rate at which secret bits are distributed between authorized partners.In particular, tomographic protocols allow for the full reconstruction, and thus characterization, of the channel. Here, we perform quantum process tomography of high-dimensional quantum communication channels with dimensions ranging from 2 to 5. We can thus explicitly demonstrate the effect of an eavesdropper performing an optimal cloning attack or an interceptresend attack during a quantum cryptographic protocol. Moreover, our study shows that quantum process tomography enables a more detailed understanding of the channel conditions compared to a coarse-grained measure, such as quantum bit error rates. This full characterization technique allows us to optimize the performance of quantum key distribution under asymmetric experimental conditions, which is particularly useful when considering high-dimensional encoding schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.