The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain’s functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as “dynamic” or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.
The brain is a complex dynamical system composed of many interacting sub-regions. Knowledge of how these interactions reconfigure over time is critical to a full understanding of the brain’s functional architecture, the neural basis of flexible cognition and behavior, and how neural systems are disrupted in psychiatric and neurological illness. The idea that we might be able to study neural and cognitive dynamics through analysis of neuroimaging data has catalyzed substantial interest in methods which seek to estimate moment-to-moment fluctuations in functional connectivity (often referred to as “dynamic” or time-varying connectivity; TVC). At the same time, debates have emerged regarding the application of TVC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive relevance of resting TVC. These and other unresolved issues complicate the interpretation of resting TVC findings and limit the insights which can be gained from this otherwise promising research area. This article reviews the current resting TVC literature in light of these issues. We introduce core concepts, define key terms, summarize current controversies and open questions, and present a forward-looking perspective on how resting TVC analyses can be rigorously applied to investigate a wide range of questions in cognitive and systems neuroscience.
Cognitive flexibility-the ability to adjust one ́s behavior to changing environmental demands-is crucial for controlled behavior. However, the term 'cognitive flexibility' is used heterogeneously, and associations between cognitive flexibility and other facets of flexible behavior have only rarely been studied systematically. To resolve some of these conceptual uncertainties, we directly compared cognitive flexibility (cue-instructed switching between two affectively neutral tasks), affective flexibility (switching between a neutral and an affective task using emotional stimuli), and feedback-based flexibility (non-cued, feedback-dependent switching between two neutral tasks). Three experimental paradigms were established that share as many procedural features (in terms of stimuli and/or task rules) as possible and administered in a pre-registered study plan (N = 100). Correlation analyses revealed significant associations between the efficiency of cognitive and affective task switching (response time switch costs). Feedback-based flexibility (measured as mean number of errors after rule reversals) did not correlate with task switching efficiency in the other paradigms, but selectively with the effectiveness of affective switching (error rate costs when switching from neutral to emotion task). While preregistered confirmatory factor analysis (CFA) provided no clear evidence for a shared factor underlying the efficiency of switching in all three domains of flexibility, an exploratory CFA suggested commonalities regarding switching effectiveness (accuracy-based switch costs). We propose shared mechanisms controlling the efficiency of cue-dependent task switching across domains, while the relationship to feedback-based flexibility may depend on mechanisms controlling switching effectiveness. Our results call for a more stringent conceptual differentiation between different variants of psychological flexibility.
Affective flexibility refers to the flexible adaptation of behavior or thought given emotionally relevant stimuli, tasks, or contexts, and has been associated with the efficiency of emotion regulation and dealing with stress and adversity. Experimentally, individual differences in affective flexibility have been measured as behavioral costs (response times, errors rates) of switching between affective and neutral tasks. However, behavioral task measures can only be treated as trait-like characteristics if they have sufficient psychometric quality. We report an analysis of the test-retest reliability (interval two weeks) as well as internal consistencies of behavioral switch costs measured in an affective task switching paradigm. This paradigm elicits strong response time switch costs for both tasks, but higher when switching to the emotion than to the gender task. These 'asymmetric switch costs' suggest dominance of the emotional task rule. Reliability analyses indicated excellent internal consistency estimates (Spearman-Brown corrected r = .92 for both switch directions) and good test-retest reliabilities (ICC(2,1) of .78 and .82, respectively) for response time-based switch costs. Effect sizes and reliability estimates were substantially lower for switch costs calculated from error rates, which is consistent with previous literature discussing the psychometric properties of task-based cognitive measures.Reliability measures were lower but still acceptable for valence-specific response time-based switch costs, potentially due to lower trial numbers per cell when increasing granularity of the analysis. In conclusion, our results indicate that response time-based affective switch costs are well-suited as individual differences measure, and thus may be a valuable proxy for assessing affective flexibility.
Introduction Previous studies have established graph theoretical analysis of functional network connectivity (FNC) as a potential tool to detect neurobiological underpinnings of psychiatric disorders. Despite the promising outcomes in studies that examined FNC aberrancies in bipolar disorder (BD) and major depressive disorder (MDD), there is still a lack of research comparing both mood disorders, especially in a nondepressed state. In this study, we used graph theoretical network analysis to compare brain network properties of euthymic BD, euthymic MDD and healthy controls (HC) to evaluate whether these groups showed distinct features in FNC. Methods We collected resting‐state functional magnetic resonance imaging (fMRI) data from 20 BD patients, 15 patients with recurrent MDD as well as 30 age‐ and gender‐matched HC. Graph theoretical analyses were then applied to investigate functional brain networks on a global and regional network level. Results Global network analysis revealed a significantly higher mean global clustering coefficient in BD compared to HC. We further detected frontal, temporal and subcortical nodes in emotion regulation areas such as the limbic system and associated regions exhibiting significant differences in network integration and segregation in BD compared to MDD patients and HC. Participants with MDD and HC only differed in frontal and insular network centrality. Conclusion In conclusion, our findings indicate that a significantly altered brain network topology in the limbic system might be a trait marker specific to BD. Brain network analysis in these regions may therefore be used to differentiate euthymic BD not only from HC but also from patients with MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.