An automated optical scanning droplet cell (OSDC) enables high-throughput quantitative characterization of thin-film semiconductor material libraries. Photoelectrochemical data on small selected measurement areas are recorded including intensity-dependent photopotentials and -currents, potentiodynamic and potentiostatic photocurrents, as well as photocurrent (action) spectra. The OSDC contains integrated counter and double-junction reference electrodes and is fixed on a precise positioning system. A Xe lamp with a monochromator is coupled to the cell through a thin poly(methyl methacrylate) (PMMA) optical fiber. A specifically designed polytetrafluoroethylene (PTFE) capillary tip is pressed on the sample surface and defines through its diameter the homogeneously illuminated measurement area. The overall and wavelength-resolved irradiation intensities and the cell surface area are precisely determined and calibrated. System development and its performance are demonstrated by means of screening of a TiWO thin film.
Improved electrocatalytic activity and selectivity for the reduction of H2O2 were obtained by electrodepositing Pd-Pt and Pd-Au on spectrographic graphite from solutions containing salts of the two metals at varying ratio. The electrocatalytic activity of the resulting binary codeposits for H2O2 reduction was evaluated by means of the redox-competition mode of scanning electrochemical microscopy (SECM) and voltammetric methods. In a potential range from 0 to -600 mV (vs. Ag/AgCl/3 M KCl) at pH 7.0 in 0.1 M phosphate citrate buffer, the electrocatalytic activity of both Pd-Pt and Pd-Au codeposits was substantially improved as compared with the identically deposited single metals suggesting an electrocatalytic synergy of the codeposits. Pd-Pt and Pd-Au codeposits were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Codepositing with Au caused a change of hedgehog-like shaped Pd nanoparticles into cauliflower-like nanoparticles with the particle size decreasing with increasing Au concentration. Codepositing Pd with Pt caused the formation of oblong structures with the size initially increasing with increasing Pt content. However, the particle size decreases with further increase in Pt concentration. The improved electrocatalytic capability for H2O2 reduction of the Pd-Pt electrodeposits on graphite was further demonstrated by immobilizing glucose oxidase as a basis for the development of an interference-free amperometric glucose biosensor.
The purpose of this study was to develop a scanning electrochemical microscopy (SECM) and scanning electrogenerated chemiluminescence (SECL) setup to visualize the localized enzymatic activity using glucose oxidase as a model. Combination of SECM and electrogenerated chemiluminescence (ECL) was made possible by integrating a photomultiplier tube (PMT) within a SECM setup which is mounted on top of an inverted microscope. An enzyme-polymer spot formed on a glass slide and placed on top of the entrance window of the PMT was used as a model sample to evaluate the potential of the combined SECM/ECL setup. Hydrogen peroxide, which was locally generated by the glucose oxidase (GOx)-catalyzed reaction, reacted with oxidized luminol which was simultaneously electrochemically generated at the positioned SECM electrode tip. By using the phase-sensitive lock-in amplifier, the potential applied to the SECM tip was sinusoidally swept to invoke an associated oscillation of the ECL. Thus, sensitivity of SECL could be substantially enhanced. Images of the local immobilized enzyme activity obtained both by ECL and generator/collector (GC) mode of SECM were compared to elucidate the pathway in which the SECM and SECL signals are generated.
Summary: The integration of gradients of enzyme activity in microstructured biosensor arrays enables intrinsic on‐line quality control of biosensor performance. Multiple sensor elements with different compositions and hence varying responses for the same analyte are evaluated as a basis for improving data reliability. The formation of glucose oxidase/polymer microstructures using a piezo microdispenser and their examination by scanning electrochemical microscopy (SECM) are used to demonstrate the feasibility of this approach.Optical microscope image of grids obtained by dispensing of 1 mg/mL GOx and 2 mg/mL Vinnapas® mixture.magnified imageOptical microscope image of grids obtained by dispensing of 1 mg/mL GOx and 2 mg/mL Vinnapas® mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.