In the study, micropropagation of three varieties of Lavandula angustifolia was developed, and the appearance of trichomes, antioxidant activity of extracts and antimicrobial activity of essential oils isolated from plants growing in field conditions and in vitro cultures were compared. The study evaluated the number of shoots, and the height and weight of the plants grown on media with additions of BAP, KIN and 2iP. The greatest height was attained by the lavenders growing on MS medium with the addition of 1 mg dm -3 2iP -'Ellagance Purple'. The greatest number of shoots was developed by the 'Ellagance Purple' and 'Munstead' plants growing on the medium with 2 mg dm -3 BAP. The highest weight was attained by the plants growing on the medium with the highest concentration of BAP -3 and 5 mg dm . Moreover, the present study determined the influence of media with the addition of different concentrations of IBA and media with a variable mineral composition (½, ¼, and complete composition of MS medium) and with the addition of IBA or NAA for rooting. The majority of the media used had a positive influence on the development of the root system. The longest root system was observed in 'Ellagance Purple' growing on the medium composed of ¼ MS with 0.2 mg dm -3 NAA. All the examined oils exhibited activity towards S. aureus, S. epidermidis, P. aeruginosa, E. coli and C. albicans. The majority of the essential oils isolated from the plants propagated in vitro exhibited stronger antimicrobial activity than the field-grown plants. The plants propagated under in vitro conditions demonstrated considerably higher antioxidant activity as compared with the field-grown plants, which was determined using the DPPH, FRAP and ABTS assay.
The aim of the present study was to determine the effect of jasmonic acid added to the culture medium on composition of Lavandula angustifolia essential oils. The chemical composition was determined by gas chromatography coupled to mass detector (GC/MS). The experiment was conducted with the use of MS medium supplemented with increasing concentration of JA (0.2, 0.5, 1, 1.5 mg∙dm). It was found that the analysed essential oils varied in terms of chemical composition depending on the content of JA in the medium. All obtained essential oils were characterised by a high content of σ-cadinene (17.06-29.64%), borneol (6.66-17.47%), caryophyllene oxide (8.30-14.01%), τ-cadinol (4.87-9.16%), beta-caryophyllene (3.54-6.57%), 1.8-cineole (1.94-5.87%), β-pinene (1.48-3.05%), geranyl acetate (0.56-2.14%) and myrtenal (0.65-2.14%).
The aim of the study was to determine the influence of jasmonic acid added to culture medium on the growth of plants and antioxidant properties of dry plant material, as well as on the antimicrobial properties of essential oils produced by the narrow-leaved lavender. For plant propagation, MS media supplemented with JA at concentrations of 0.2-1.5 mg dm−3 were used. The use of the lower JA concentrations did not influenced the growth parameters measured, whereas at the higher concentrations (1 and 1.5 mg dm−3) JA caused growth inhibition and a decrease in plant weight. With increasing JA concentration, the number of secretory trichomes decreased. Addition of 0.5 mg dm−3 JA caused an increase in secretory trichome diameter on both the adaxial and abaxial surface of leaves (83.3 and 73.2 μm, respectively). The antioxidant activity of the lavender plants propagated on media with the addition of JA (regardless of the concentration used) was higher than that of the control plants. The plants from JA-supplemented media were used to isolate essential oils, the antimicrobial activity of which was tested using the disc diffusion method at the concentrations of 10 and 50%. All the oils tested exhibited activity towards Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans. The essential oils isolated from the plants propagated on the medium with 1 mg dm−3 JA were characterized by the highest antimicrobial activity against the majority of the tested microorganisms.
The aim of this study was to identify and determine by means of gas chromatography–flame ionization detector (GC–FID) and gas chromatography–mass spectrometry (GC–MS) method the volatile compounds of essential oils obtained from three varieties of narrow-leaved lavender grown in the field and in in vitro cultures. The essential oils were isolated by hydrodistillation in Deryng apparatus. It was found that the analyzed essential oils varied in terms of chemical composition depending on the variety and conditions of growth. Sixty-four to 87 different compounds were identified in the oils. Essential oils of all 3 varieties obtained in in vitro cultures contained large amounts of borneol (13–32%). This compound was also dominant in plants obtained from in vivo conditions in varieties Ellagance Purple (11%) and Blue River (13%), and in the Munstead variety, the dominant compound was linalool (13%). High concentration of epi-α-cadinol (10–20%) was found in essential oils obtained from in vitro cultured plants. Globulol was found in high concentration (10%) in the Munstead variety grown in in vitro conditions. However, significant quantitative and qualitative differences were found with respect to composition of essential oils obtained from plants grown in the field and in vitro conditions. There was a lack of (E)-β-ocimene, 3-octyn-2-one, 1-octen-3-yl acetate, sabina ketone, pinocarvone, trans-carveol, nerol, epi-longipinanol, or humulene epoxide II. In comparison to oils obtained from field-grown plants, the oils isolated from plants grown in in vitro conditions contained the less volatile compounds identified in the final stage of GC–FID and GC–MS analysis, i.e., thymol, carvacrol, γ-gurjunene, trans-calamene, α-calacorene, khusinol, and 8-cedren-13-ol.
The aim of the study was to determine the influence of the essential oils isolated from the field - grown and micropropagated in vitro narrow - leaved lavender of the 'Munstead' cultivar, on human skin cells, and their capability to synthesise procollagen. The amount of procollagen type I produced by fibroblast cells was determined using ELISA kit. Essential oil isolated from micropropagated lavender was further used as a protective ingredient against the development of microorganisms in O/W cosmetic emulsion. The presented results demonstrate that the use of 0.01, 0.001 and 0.0001% essential oils isolated from in vitro plants stimulate HSF cells to the production of procollagen. It was further performed that the tested essential oil used in the concentration of 0.1% in a cosmetic emulsion is characterised by preservative effect for cosmetic preparations for the period of 3 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.