Long-lasting facilitations of spinal nociceptive reflexes resulting from temporal summation of nociceptive inputs have been described on many occasions in spinal, nonanesthetized rats. Because noxious inputs also trigger powerful descending inhibitory controls, we investigated this phenomenon in intact, halothane-anesthetized rats and compared our results with those obtained in other preparations. The effects of temporal summation of nociceptive inputs were found to be very much dependent on the type of preparation. Electromyographic responses elicited by single square-wave electrical shocks (2 ms, 0.16 Hz) applied within the territory of the sural nerve were recorded in the rat from the ipsilateral biceps femoris. The excitability of the C-fiber reflex recorded at 1.5 times the threshold (T) was tested after 20 s of electrical conditioning stimuli (2 ms, 1 Hz) within the sural nerve territory. During the conditioning procedure, the C-fiber reflex was facilitated (wind-up) in a stimulus-dependent fashion in intact, anesthetized animals during the application of the first seven conditioning stimuli; thereafter, the magnitude of the responses reached a plateau and then decreased. Such a wind-up phenomenon was seen only when the frequency of stimulation was 0.5 Hz or higher. In spinal, unanesthetized rats, the wind-up phenomenon occurred as a monotonic accelerating function that was obvious during the whole conditioning period. An intermediate picture was observed in the nonanesthetized rat whose brain was transected at the level of the obex, but the effects of conditioning were profoundly attenuated when such a preparation was anesthetized. In intact, anesthetized animals the reflex was inhibited in a stimulus-dependent manner during the postconditioning period. These effects were not dependent on the frequency of the conditioning stimulus. Such inhibitions were blocked completely by transection at the level of the obex, and in nonanesthetized rats were then replaced by a facilitation. A similar long-lasting facilitation was seen in nonanesthetized, spinal rats. It is concluded that, in intact rats, an inhibitory mechanism counteracts the long-lasting increase of excitability of the flexor reflex seen in spinal animals after high-intensity, repetitive stimulation of C-fibers. It is suggested that supraspinally mediated inhibitions also participate in long term changes in spinal cord excitability after noxious stimulation.
Proprioceptive disturbances had the most significant effect in increasing repositioning-error among healthy subjects. The between-groups analysis confirmed evidence consistent with the literature of greater repositioning-error in people with NS-CLBP than healthy subjects.
Electromyographic recordings were made in healthy volunteers from the knee-flexor biceps femoris muscle of the nociceptive RIII reflex elicited by electrical stimulation of the cutaneous sural nerve. The stimulus intensity was adjusted to produce a moderate pricking-pain sensation. The test responses were conditioned by a nonnoxious thermal (=40 degrees C) stimulus applied to the receptive field of the sural nerve. This stimulus was delivered by a CO2 laser stimulator and consisted of a 100-ms pulse of heat with a beam diameter of 20 mm. Its power was 22.7 +/- 4.2 W (7.2 mJ/mm2), and it produced a sensation of warmth. The maximum surface temperature reached at the end of the period of stimulation was calculated to be 7 degrees C above the actual reference temperature of the skin (32 degrees C). The interval between the laser (conditioning) and electrical (test) stimuli was varied from 50 to 3, 000 ms in steps of 50 ms. It was found that the nociceptive flexion reflex was facilitated by the thermal stimulus; this modulation occurred with particular conditioning-test intervals, which peaked at 500 and 1,100 ms with an additional late, long-lasting phase between 1,600 and 2,300 ms. It was calculated that the conduction velocities of the cutaneous afferent fibers responsible for facilitating the RIII reflex, fell into three ranges: one corresponding to A delta fibers (3.2 m/s) and two in the C fiber range (1.3 and 0.7 m/s). It is concluded that information emanating from warm receptors and nociceptors converges. In this respect, the present data show, for the first time, that in man, conditioning nonnociceptive warm thermoreceptive A delta and C fibers results in an interaction at the spinal level with a nociceptive reflex. This interaction may constitute a useful means whereby signals add together to trigger flexion reflexes in defensive reactions and other basic motor behaviors. It also may contribute to hyperalgesia in inflammatory processes. The methodology used in this study appears to be a useful noninvasive tool for exploring the thermoalgesic mechanisms in both experimental and clinical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.