International audienceAcoustic signals generated in water by terawatt (TW) laser pulses undergoing filamentation are studied. The acoustic signal has a very broad spectrum, spanning from 0.1 to 10 MHz, and is confined in the plane perpendicular to the laser direction. Such source appears to be promising for the development of remote laser based acoustic applications
Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.
Experiments and simulations are performed to study filamentation and generation of acoustic waves in water by loosely focused multi-millijoules laser pulses. When the laser pulse duration is increased from femtosecond to nanosecond duration, a transition is observed from a filamentary propagation with extended and low energy density deposition to a localized breakdown, related to high energy density deposition. The transition suggests that Kerr self-focusing plays a major role in the beam propagation dynamics. As a result, the shape, the amplitude and the spectrum of the resulting pressure wave present a strong dependence on the laser pulse duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.