When resampling an image to a new set of coordinates (for example, when rotating an image), there is often a noticeable loss in image quality. To preserve image quality, the interpolating function used for the resampling should be an ideal low-pass filter. To determine which limited extent convolving functions would provide the best interpolation, five functions were compared: A) nearest neighbor, B) linear, C) cubic B-spline, D) high-resolution cubic spline with edge enhancement (a = -1), and E) high-resolution cubic spline (a = -0.5). The functions which extend over four picture elements (C, D, E) were shown to have a better frequency response than those which extend over one (A) or two (B) pixels. The nearest neighbor function shifted the image up to one-half a pixel. Linear and cubic B-spline interpolation tended to smooth the image. The best response was obtained with the high-resolution cubic spline functions. The location of the resampled points with respect to the initial coordinate system has a dramatic effect on the response of the sampled interpolating function the data are exactly reproduced when the points are aligned, and the response has the most smoothing when the resampled points are equidistant from the original coordinate points. Thus, at the expense of some increase in computing time, image quality can be improved by resampled using the high-resolution cubic spline function as compared to the nearest neighbor, linear, or cubic B-spline functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.