The field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.
Background There are many studies indicating that alterations in the abundance of certain gut microbiota are associated with colorectal cancer (CRC). However, a causal relationship has not been identified due to confounding factors such as lifestyle, environmental, and possible reverse causal associations between the two. Furthermore, certain host gene mutations can also contribute to the development of CRC. However, the association between genes and gut microbes in patients with CRC has not been extensively studied. Methods We conducted a two-sample Mendelian randomization (MR) study to reveal the causal relationship between gut microbiota and CRC. We obtained SNPs associated with gut microbiome abundance as instrumental variables (IVs) from a large-scale, multi-ethnic GWAS study, and extracted CRC-related datasets from an East Asian Population genetic consortia GWAS (AGWAS) study and FinnGen consortium, respectively. We analyzed a total of 166 bacterial features at four taxonomic levels, including order, family, genus, and species. The inverse-variance-weighted (IVW), weighted median, MR-Egger, and simple median methods were applied to the MR analysis, and the robustness of the results were tested using a series of sensitivity analyses. We extracted IVs of gut microbiota with direct causal association with CRC for SNP annotation to identify the genes in which these genetic variants were located to reveal the possible host gene-microbiome associations in CRC patients. Results The findings from our MR analysis based on CRC-associated GWAS datasets from AGWAS revealed causal relationships between 6 bacterial taxa and CRC at a locus-wide significance level (P < 1 × 10–5). The IVW method found that family Porphyromonadaceae, genera Anaerotruncus, Intestinibacter, Slackia, and Ruminococcaceae UCG004, and species Eubacterium coprostanoligenes group were positively associated with CRC risk, which was generally consistent with the results of other complementary analyses. The results of a meta-analysis of the MR estimates from the AGWAS and the FinnGen datasets showed that family Porphyromonadaceae and genera Slackia, Anaerotruncus, and Intestinibacter replicated the same causal association. Sensitivity analysis of all causal associations did not indicate significant heterogeneity, horizontal pleiotropy, or reverse causal associations. We annotated the SNPs at a locus-wide significance level of the above intestinal flora and identified 24 host genes that may be related to pathogenic intestinal microflora in CRC patients. Conclusion This study supported the causal relationship of gut microbiota on CRC and revealed a possible correlation between genes and pathogenic microbiota in CRC. These findings suggested that the study of the gut microbiome and its further multi-omics analysis was important for the prevention and treatment of CRC.
Ovarian tumor protease deubiquitinase 5 (OTUD5) has been discussed as a regulator of cancer development. Herein, the current study set out to explore the molecular mechanism of OTUD5 in non‐small cell lung cancer (NSCLC) cell proliferation, invasion, and migration. Firstly, the expression patterns of OTUD5, phosphatase and tensin homolog (PTEN), as well as microRNA (miR)-652-3p in cells were detected by qRT-PCR and Western blot. Cell viability, migration, and invasion were assessed with the help of cell-counting kit-8 and Transwell assays, in addition to the measurement of the ubiquitination and protein levels of PTEN. The binding relations between OTUD5 and PTEN, and miR-652-3p and OTUD5 were testified by co-immunoprecipitation or dual-luciferase assays. Cells were further treated with GSK2643943A (inhibitor of deubiquitinase) or miR-652-3p-inhibitor to explore the role of PTEN ubiquitination and miR-652-3p in NSCLC cells. OTUD5 and PTEN were both poorly-expressed, and miR-652-3p was highly-expressed in NSCLC cells. On the other hand, over-expression of OTUD5 suppressed NSCLC cell proliferation, invasion, and migration. OTUD5 deubiquitinated and stabilized PTEN, and miR-652-3p targeted and inhibited OTUD5 expression. Augmenting the ubiquitination levels of PTEN promoted NSCLC cell growth, whereas miR-652-3p inhibition promoted the tumor-suppressing effects of the OTUD5/ PTEN axis in NSCLC. Altogether, our findings highlighted that miR-652-3p restrained the role of OTUD5 in deubiquitinating PTEN to improve PTEN protein level, thereby promoting NSCLC cell proliferation, invasion, and migration.
HER2 amplification/overexpression is a common driver in a variety of cancers including gallbladder cancer (GBC). For patients with metastatic GBC, chemotherapy remains the standard of care with limited efficacy. The combination of HER2 antibody trastuzumab plus chemotherapy is the frontline treatment option for patients with HER2-positive breast/gastric cancer. Recently, this regime also showed antitumor activity in HER2-positive GBC. However, resistance to this regime represents a clinical challenge. Camrelizumab is a novel PD-1 antibody approved for Hodgkin lymphoma and hepatocellular carcinoma in China. Here we presented a HER2-positive metastatic GBC patient who was refractory to trastuzumab plus chemotherapy but experienced significant clinical benefit after the addition of camrelizumab. A 69-year-old male GBC patient was found disease progression in the lung six month after operation, staged IV (T3N0M1). Immunohistochemical (IHC) staining was positive for HER2 (3+) and negative for PD-L1 in both primary and pulmonary lesions. Chemotherapy including S-1 plus gemcitabine, as well as oxaliplatin plus paclitaxel consecutive failed, with a new lesion discovered in the liver. Genomic profiling with a multi-gene NGS panel testing (Onco Panscan࣪, Genetron Health) of the pulmonary lesion showed the presence of TP53 S241Y, ARID2 R273*, EGFR E872K mutations, HER2 amplification (fold change, 8.7), and high tumor mutational burden (TMB 10.33). He was treated with trastuzumab in combination with afatinib and capecitabine. Unfortunately, progressive disease in the lung and brain was observed after two cycles. Due to progression of disease and high TMB of the pulmonary biopsy, also based on the reported activity of PD-1 antibody plus trastuzumab in trastuzumab-resistant, advanced HER2-positive breast cancer, a triplet regime of camrelizumab, trastuzumab, and oxaliplatin was administered. The lesions of the lung, liver, and brain completely regressed after five cycles. From cycle 8 of maintance regime, an anti-angiogenic agent apatinib was added to treat reactive cutaneous capillary endothelial proliferation (RCCEP), the most common immune-related adverse event (irAE) related to camrelizumab, with complete regression after four months. Currently, the patient remains in remission. Our case highlights the potential of immunotherapy in combination with HER2-targeted therapy in HER2-positive GBC. We also demonstrated that immune-related adverse events (irAEs) associated with camrelizumab can be managed with an anti-VEGF agent apatinib. This case not only highlights the importance of irAE management in patients treated with camrelizumab, but also demonstrates the potential of PD-1 antibody plus trastuzumab in HER2-positive GBCs who have developed resistance to chemotherapy and trastuzumab-based targeted therapy. Citation Format: Dong Yan, Xiaomo Li, Li Wang, Yurong Cheng, Si Liu. Addition of PD-1 antibody camrelizumab overcame resistance to trastuzumab plus chemotherapy in a HER2-positive, metastatic gallbladder cancer patient [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5517.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.