Betulin is a naturally abundant and hydrophobic compound in the outer bark of birch and can readily be obtained by solvent extraction. Here, solutions of betulin were used to treat cotton fabrics and improve their water repellency. Cotton fabric impregnated in a solution of betulin in ethanol showed a contact angle for water of approximately 153°and reached a water repellency score of 70 according to a standard water repellency test method. A betulin-terephthaloyl chloride (TPC) copolymer was synthesized. Both betulin and betulin-TPC copolymer were characterized by nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. The copolymer was characterized by size exclusion chromatography and differential scanning calorimetry. When impregnated with a solution of betulin-TPC copolymer in tetrahydrofuran, a cotton fabric showed a water contact angle of 151°a nd also reached a water repellency score of 70. Films based on betulin and betulin-TPC copolymer were prepared and coated onto the surface of the fabrics by compression molding. These coated fabrics showed water contact angles of 123°and 104°respectively and each reached a water repellency score of 80.
Sustainable thermal insulating materials produced from cellulosic fibers provide a viable alternative to plastic insulation foams. Industrially available, abundant, and inexpensive mechanical pulp fiber and recycled textile fiber provide potential raw materials to produce thermal insulating materials. To improve the fire retardancy of low-density thermal insulating materials produced from recycled cotton denim and mechanical pulp fibers, bio-based fire retardants, such as sulfonated kraft lignin, kraft lignin, and nanoclays, were coated onto sustainable insulating material surfaces to enhance their fire retardancy. Microfibrillated cellulose was used as a bio-based binder in the coating formula to disperse and bond the fire-retardant particles to the underlying thermal insulating materials. The flammability of the coated thermal insulating materials was tested using a single-flame source test and cone calorimetry. The results showed that sulfonated kraft lignin-coated cellulosic thermal insulating materials had a better fire retardancy compared with that for kraft lignin with a coating weight of 0.8 kg/m2. Nanoclay-coated samples had the best fire retardancy and did not ignite under a heat flux of 25 kW/m2, as shown by cone calorimetry and single-flame source tests, respectively. These cost-efficient and bio-based fire retardants have broad applications for improving fire retardancy of sustainable thermal insulating materials.
Betulin, a natural compound extractable from the outer bark of birch, can be used to improve the properties of cellulosic textile fibres. Herein, oxidation was performed to prepare carboxyl-functionalized cellulose, which was subsequently covalently attached by betulin through esterification. The surface-modified cellulosic textile fibres showed a substantially improved hydrophobicity, as indicated by a water contact angle of 136°. Moreover, the material showed excellent antibacterial properties, as indicated by over 99% bacterial removal and growth inhibition, in both Gram-positive and Gram-negative bacterial assays. The method of surface-modification of the cellulosic materials adapted in this study is simple and, to the best of our knowledge, has not been carried out before. The results of this study prove that betulin, a side-stream product produced by forest industry, could be used in value-added applications, such as for preparing functional materials. Additionally, this modification route can be envisaged to be applied to other cellulose sources (e.g., microfibrillated cellulose) to achieve the goal of functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.