The metabolites of stored, chilled chicken meat were analyzed using liquid chromatograph-mass spectrometry and metabolomics. The results showed significant differences in the metabolites of chicken meat stored at 4°C for 0 D and meat stored for longer periods of 2 D, 4 D, 6 D, and 10 D, when analyzed based on a variable of importance >2 and
P
< 0.05. These changed metabolites included amino acids, amines, nucleosides, nucleotides, carbohydrates, organic acids, and other substances. The data from this study provide a holistic understanding of food quality changes in chicken meat during deterioration in storage.
Target of rapamycin (TOR), a member of the phosphatidylinositol kinase-related kinase family, plays a critical role in the regulation of growth, metabolism, development and survival, at both the cellular and the organismal levels. Two paralogous Tor genes, BmTor1 and BmTor2, were identified as a pair of inverted repeats in the genome of the silkworm Bombyx mori. The synteny of BmTor1 and CG8360 indicates that BmTor1 is the orthologue while BmTor2 is a duplicate. Analyses of the two BmTor genes at both the nucleotide and amino acid levels reveal that they are evolutionally and structurally conserved. The two BmTor genes had similar expression patterns of tissue distribution with highest levels in the nervous system, and nearly identical developmental change profiles with maximal levels during the 4(th) -larval-moulting and the larval-pupal transition stages. Furthermore, both BmTor genes were up-regulated by either starvation or the moulting hormone 20-hydroxyecdysone (20E), while BmTor2 was more sensitive to both treatments than BmTor1. For the first time, we have identified two copies of the Tor gene in a higher eukaryote, which are induced by starvation and 20E during the larval moulting and the larval-pupal transition stage.
BackgroundIncreasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood.MethodsIn this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques.ResultsA total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component.ConclusionsThe determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-015-0346-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.