We present an integrated research environment (RAVEN) that we have developed for the purpose of developing and testing object tracking algorithms. As a Windows application, RAVEN provides a user interface for loading and viewing video sequences and interacting with the segmentation and object tracking algorithms, which are included at run time as plug-ins. The plug-ins interact with RAVEN via a programming interface, enabling algorithm developers to concentrate on their ideas rather than on the user interface. Over the past two years, RAVEN has greatly enhanced the productivity of our researchers, enabling them to create a variety of new algorithms and extend RAVEN's capabilities via plug-ins. Examples include several object tracking algorithms, a live-wire segmentation algorithm, a methodology for the evaluation of segmentation quality, and even a mediaprocessor implementation of an object tracker. After implementing an algorithm, RAVEN makes it easy to present the results since it provides several mask display modes and output options for both image and video. We have found that RAVEN facilitates the entire research process, from prototyping an algorithm to visualization of the results to a mediaprocessor implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.