In higher plants, the splicing of organelle-encoded mRNA involves a complex collaboration with nuclear-encoded proteins. Pentatricopeptide repeat (PPR) proteins have been implicated in these RNA-protein interactions. In this study, we performed the cloning and functional characterization of maize Defective kernel 35 (Dek35). The dek35-ref mutant is a lethal-seed mutant with developmental deficiency. Dek35 was cloned through Mutator tag isolation and further confirmed by four additional independent mutant alleles. Dek35 encodes an P-type PPR protein that targets the mitochondria. The dek35 mutation causes significant reduction in the accumulation of DEK35 proteins and reduced splicing efficiency of mitochondrial nad4 intron 1. Analysis of mitochondrial complex in dek35 immature seeds indicated severe deficiency in the complex I assembly and NADH dehydrogenase activity. Transcriptome analysis of dek35 endosperm revealed enhanced expression of genes involved in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function and activity. Collectively, these results indicate that Dek35 encodes an PPR protein that affects the cis-splicing of mitochondrial nad4 intron 1 and is required for mitochondrial function and seed development.
Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424.
Cereal storage proteins are major nitrogen sources for humans and livestock. Prolamins are the most abundant storage protein in most cereals. They are deposited into protein bodies (PBs) in seed endosperm. The inner structure and the storage mechanism for prolamin PBs is poorly understood. Maize opaque10 (o10) is a classic opaque endosperm mutant with misshapen PBs. Through positional cloning, we found that O10 encodes a novel cereal-specific PB protein. Its middle domain contains a seven-repeat sequence that is responsible for its dimerization. Its C terminus contains a transmembrane motif that is required for its ER localization and PB deposition. A cellular fractionation assay indicated that O10 is initially synthesized in the cytoplasm and then anchored to the ER and eventually deposited in the PB. O10 can interact with 19-kD and 22-kD α-zeins and 16-kD and 50-kD γ-zeins through its N-terminal domain. An immunolocalization assay indicated that O10 co-localizes with 16-kD γ-zein and 22-kD α-zein in PBs, forming a ring-shaped structure at the interface between the α-zein-rich core and the γ-zein-rich peripheral region. The loss of O10 function disrupts this ring-shaped distribution of 22-kD and 16-kD zeins, resulting in misshapen PBs. These results showed that O10, as a newly evolved PB protein, is essential for the ring-shaped distribution of 22-kD and 16-kD zeins and controls PB morphology in maize endosperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.