Oral cancer is a significant health problem in the USA and throughout the world. Most oral cancer patients are diagnosed at a late stage, when treatment is less successful and treatment-associated morbidity is more severe. A number of new diagnostic aids to conventional oral examination have recently been introduced to assist in the early detection of oral neoplasia. In particular, autofluorescence imaging has emerged as a promising adjunctive technique to improve early identification of oral premalignant lesions. Direct visual inspection of tissue autofluorescence has shown encouraging results in high-prevalence populations, but the technique requires subjective interpretation and depends on the visual recognition skills of the examiner. Capturing and analyzing digital fluorescence images can reduce subjectivity and potentially improve sensitivity of detection of precancerous changes. Recent studies of wide-field autofluorescence imaging in low-prevalence populations suggest that benign lesions such as inflammation may give rise to false-positive results. High-resolution fluorescence imaging is a new modality that can be used in conjunction with wide-field imaging to improve specificity by imaging subcellular detail of neoplastic tissues. The combination of wide-field and high-resolution fluorescence imaging systems with automated image analysis should be investigated to maximize overall diagnostic performance for early detection of oral neoplasia.
Background & Aims High-resolution microendoscopy is an optical imaging technique with the potential to improve the accuracy of endoscopic screening for esophageal squamous neoplasia. Although these microscopic images can readily be interpreted by trained personnel, quantitative image analysis software could facilitate the use of this technology in low-resource settings. In this study we developed and evaluated quantitative image analysis criteria for the evaluation of neoplastic and non-neoplastic squamous esophageal mucosa. Methods We performed image analysis of 177 patients undergoing standard upper endoscopy for screening or surveillance of esophageal squamous neoplasia, using high-resolution microendoscopy, at 2 hospitals in China and 1 in the United States from May 2010 to October 2012. Biopsies were collected from imaged sites (n=375); a consensus diagnosis was provided by 2 expert gastrointestinal pathologists and used as the standard. Results Quantitative information from the high-resolution images was used to develop an algorithm to identify high-grade squamous dysplasia or invasive squamous cell cancer, based on histopathology findings. Optimal performance was obtained using mean nuclear area as the basis for classification, resulting in sensitivities and specificities of 93% and 92% in the training set, 87% and 97% in the test set, and 84% and 95% in an independent validation set, respectively. Conclusions High-resolution microendoscopy with quantitative image analysis can aid in the identification of esophageal squamous neoplasia. Use of software-based image guides may overcome issues of training and expertise in low-resource settings, allowing for widespread use of these optical biopsy technologies.
ton VR, Sinha S. Phase-contrast MRI reveals mechanical behavior of superficial and deep aponeuroses in human medial gastrocnemius during isometric contraction. J Appl Physiol 105: 1312-1320, 2008. First published August 14, 2008 doi:10.1152/japplphysiol.90440.2008.-The behavior of the entire medial gastrocnemius (MG) superficial and deep aponeurosis structure was investigated with velocity-encoded phasecontrast, spin-tag, and three-dimensional morphometric magnetic resonance imaging. The displacements and strain of both these aponeuroses, muscle length, and the cross-sectional segment length of the deep aponeurosis were measured during isometric plantarflexion at 20% and 40% of maximal voluntary contraction (MVC). The length of the entire MG shortened during 20% and 40% MVC. All regions of interest in both aponeuroses moved proximally. Positive strain (lengthening) occurred in both ends of the deep aponeurosis and in the proximal region of the superficial aponeurosis. In contrast, negative strain (shortening) was observed in the middle region of the deep aponeurosis and in the distal region of the superficial aponeurosis. Consistent with this shortening of the deep aponeurosis length along the proximal-distal axis was expansion of the aponeuroses in the medial-lateral and anterior-posterior directions in the cross-sectional plane. It is concluded that at low to moderate force levels of isometric contraction, regional differences in strain occur along the proximal-distal axis of both aponeuroses, and some regions of both aponeuroses shorten. strain; skeletal muscle; morphology; velocity-encoded phase-contrast magnetic resonance imaging; aponeurosis DURING HUMAN MOVEMENT, force produced by muscle fibers is transmitted through tendinous tissue, that is, tendons and aponeuroses, to bones since skeletal muscle is attached to the bones via tendinous tissues at both proximal and distal ends of the muscle. These tendinous tissues play an important role as series elastic components and can store elastic energy during the movement (1, 4). Ultrasonographic techniques have suggested that during an isometric contraction the superficial and deep aponeuroses of medial gastrocnemius (MG) are homogeneously stretched along their lengths in opposite directions; the superficial aponeurosis is stretched distally, whereas the deep aponeurosis is stretched proximally (13,14). A rather different conclusion was drawn in other references in the literature (16,24,25), which pointed out that the strain properties of aponeurosis may be more complex than the ultrasound data suggest. Direct measurements of aponeurosis strain in contracting rat gastrocnemius muscle indicate inhomogeneous strain (25), and several models of contracting unipennate muscle also indicate inhomogeneous strain in the aponeuroses (16,24).Phase-contrast (PC) magnetic resonance imaging (MRI) has been used to investigate the mechanical behavior of the muscle and tendinous tissue during muscle contraction (5)(6)(7)20). The PC MRI technique has the advantage of superior sof...
BackgroundEarly detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging.MethodsThe fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine.FindingsThe fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time.ConclusionOur results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.
Background:Sleep disruptions occur early and frequently in Parkinson’s disease (PD). PD patients also show a slowing of resting state activity. Alpha-synuclein is causally linked to PD and accumulates in sleep-related brain regions. While sleep problems occur in over 75% of PD patients and severely impact the quality of life of patients and caregivers, their study is limited by a paucity of adequate animal models.Objective:The objective of this study was to determine whether overexpression of wildtype alpha-synuclein could lead to alterations in sleep patterns reminiscent of those observed in PD by measuring sleep/wake activity with rigorous quantitative methods in a well-characterized genetic mouse model.Methods:At 10 months of age, mice expressing human wildtype alpha-synuclein under the Thy-1 promoter (Thy1-aSyn) and wildtype littermates underwent the subcutaneous implantation of a telemetry device (Data Sciences International) for the recording of electromyograms (EMG) and electroencephalograms (EEG) in freely moving animals. Surgeries and data collection were performed without knowledge of mouse genotype.Results:Thy1-aSyn mice showed increased non-rapid eye movement sleep during their quiescent phase, increased active wake during their active phase, and decreased rapid eye movement sleep over a 24-h period, as well as a shift in the density of their EEG power spectra toward lower frequencies with a significant decrease in gamma power during wakefulness.Conclusions:Alpha-synuclein overexpression in mice produces sleep disruptions and altered oscillatory EEG activity reminiscent of PD, and this model provides a novel platform to assess mechanisms and therapeutic strategies for sleep dysfunction in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.