Spermatogenesis includes mitosis of spermatogonia, meiosis of pachytene spermatocytes and spermiogenesis of round spermatids. MiRNAs as a ~22 nt small noncoding RNA are involved in regulating spermatogenesis at post-transcriptional level. However, the dynamic miRNAs expression in the developmental porcine male germ cells remains largely undefined. In this study, we purified porcine spermatogonia, pachytene spermatocytes and round spermatids using a STA-PUT apparatus. A small RNA deep sequencing and analysis were conducted to establish a miRNAs profiling in these male germ cells. We found that 19 miRNAs were differentially expressed between spermatogonia and pachytene spermatocytes, and 74 miRNAs differentially expressed between pachytene spermatocytes and round spermatids. Furthermore, 91 miRNAs were upregulated, while 108 miRNAs were downregulated in spermatozoa. We demonstrated that ,, and were highly expressed in spermatogonia, pachytene spermatocytes, round spermatids and spermatozoa respectively. The findings could provide novel insights into roles of miRNAs in regulation of porcine spermatogenesis.
Gametogenesis is a complex process, which includes mitosis and meiosis and results in the production of ovum and sperm. The development of gametogenesis is dynamic and needs many different genes to work synergistically, but it is lack of global perspective research about this process. In this study, we detected the dynamic process of gametogenesis from the perspective of systems biology based on protein-protein interaction networks (PPINs) and functional analysis. Results showed that gametogenesis genes have strong synergistic effects in PPINs within and between different phases during the development. Addition to the synergistic effects on molecular networks, gametogenesis genes showed functional consistency within and between different phases, which provides the further evidence about the dynamic process during the development of gametogenesis. At last, we detected and provided the core molecular modules of different phases about gametogenesis. The gametogenesis genes and related modules can be obtained from our Web site Gametogenesis Molecule Online (GMO, http://gametsonline.nwsuaflmz.com/index.php), which is freely accessible. GMO may be helpful for the reference and application of these genes and modules in the future identification of key genes about gametogenesis. Summary, this work provided a computational perspective and frame to the analysis of the gametogenesis dynamics and modularity in both human and mouse.
Spermatogenesis is an important physiological process associated with male infertility. As a kind of post-transcriptional regulation, RNA editings (REs) change the genetic information at the mRNA level. But whether there are REs and what's the role of REs during the process are still unclear. In this study, we integrated published RNA-Seq datasets and established a landscape of RNA REs during the development of mouse spermatogenesis. Totally, 7530 editing sites occurred in 2012 genes among all types of male germ cells were found, these sites enrich on some regions of chromosomes, including chromosome 17 and both ends of chromosome Y. We also found about half of the REs in CDSs can cause amino acids changes. Some non-synonymous REs which exist in specific genes may play important roles in spermatogenesis. Finally, we verified a nonsynonymous A-to-I RNA editing site in Cog3 and a stoploss editing in Tssk6 during spermatogenesis. In short, we systematically analyzed the dynamic landscape of RNA editing at different stages of spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.