We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.
SummaryIn the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somalassociated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST.
Gonadotropin-releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS 17␣-methyltestosterone significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABA A receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABA A receptor-mediated spontaneous postsynaptic currents (sPSCs) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABA A receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially localized GnRH neurons abrogated the AAS-induced increase in GABA A receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABA A receptormediated inhibitory tone onto downstream GnRH neurons, resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers.
Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which GABA type A (GABA A ) receptormediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild-type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABA A receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild-type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, spontaneous IPSC amplitude and frequency and the expression of selective GABA A receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR-versus ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu.
Cell-free DNA (cfDNA) in blood is used as a source of genetic material for noninvasive pre-natal and cancer diagnostic assays in clinical practice. Recently we have started a project for new biomarker discovery with a view to developing new noninvasive diagnostic assays. While reviewing literature, it was found that exosomes may be a rich source of biomarkers, because exosomes play an important role in human health and disease. While characterizing exosomes found in human blood plasma, we observed the presence of cfDNA in plasma exosomes. Plasma was obtained from blood drawn into K 3 EDTA tubes. Exosomes were isolated from cell-free plasma using a commercially available kit. Sizing and enumeration of exosomes were done using electron microscopy and NanoSight particle counter. NanoSight and confocal microscopy was used to demonstrate the association between dsDNA and exosomes. DNA extracted from plasma and exosomes was measured by a fluorometric method and a droplet digital PCR (ddPCR) method. Size of extracellular vesicles isolated from plasma was heterogeneous and showed a mean value of 92.6 nm and a mode 39.7 nm. A large proportion of extracellular vesicles isolated from plasma were identified as exo-somes using a fluorescence probe specific for exosomes and three protein markers, Hsp70, CD9 and CD63, that are commonly used to identify exosome fraction. Fluorescence dye that stain dsDNA showed the association between exosomes and dsDNA. Plasma cfDNA concentration analysis showed more than 93% of amplifiable cfDNA in plasma is located in plasma exosomes. Storage of a blood sample showed significant increases in exosome count and exosome DNA concentration. This study provide evidence that a large proportion of plasma cfDNA is localized in exosomes. Exosome release from cells is a metabolic energy dependent process, thus suggesting active release of cfDNA from cells as a source of cfDNA in plasma. PLOS ONE | https://doi.org/10.1371/journal.pone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.