Objective
To report outcome of horses with femorotibial lesions (meniscal, cartilage or ligamentous) treated with surgery and intra‐articular administration of autologous bone marrow derived mesenchymal stem cells (BMSCs).
Study Design
Prospective case series.
Animals
Horses (n = 33).
Methods
Inclusion criteria included horses that had lameness localized to the stifle by diagnostic anesthesia, exploratory stifle arthroscopy and subsequent intra‐articular administration of autologous BMSCs. Case details and follow‐up were gathered from medical records, owner, trainer or veterinarian. Outcome was defined as returned to previous level of work, returned to work, or failed to return to work.
Results
Follow‐up (mean, 24 months) was obtained; 43% of horses returned to previous level of work, 33% returned to work, and 24% failed to return to work. In horses with meniscal damage (n = 24) a higher percentage in the current study (75%) returned to some level of work compared to those in previous reports (60–63%) that were treated with arthroscopy alone, which resulted in a statistically significant difference between studies (P = .038). Joint flare post injection was reported in 3 horses (9.0%); however, no long‐term effects were noted.
Conclusions
Intra‐articular administration of BMSC postoperatively for stifle lesions appeared to be safe, with morbidity being similar to that of other biologic agents. Improvement in ability to return to work may be realized with BMSC treatment compared to surgery alone in horses with stifle injury.
The results of this study aid in defining the current usage of different joint therapy medications within equine practice. This knowledge can guide further research as well as education.
Objective
The goal of this study was to test the ability of an injectable self-assembling peptide (KLD) hydrogel with or without chondrogenic factors (CF) and allogeneic bone marrow stromal cells (BMSCs) to stimulate cartilage regeneration in a full-thickness, critically-sized, rabbit cartilage defect model in vivo. We used CF treatments to test the hypotheses that CF would stimulate chondrogenesis and matrix production by cells migrating into acellular KLD (KLD+CF) or by BMSCs delivered in KLD (KLD+CF+BMSCs).
Design
Three groups were tested against contralateral untreated controls: KLD, KLD+CF, and KLD+CF+BMSCs, n=6–7. TGF-β1, dexamethasone, and IGF-1 were used as chondrogenic factors (CF) pre-mixed with KLD and BMSCs before injection. Evaluations included gross, histological, immunohistochemical and radiographic analyses.
Results
KLD without CF or BMSCs showed the greatest repair after 12 weeks with significantly higher Safranin-O, collagen II immunostaining, and cumulative histology scores than untreated contralateral controls. KLD+CF resulted in significantly higher aggrecan immunostaining than untreated contralateral controls. Including allogeneic BMSCs+CF markedly reduced the quality of repair and increased osteophyte formation compared to KLD alone.
Conclusions
These data show that KLD can fill full-thickness osteochondral defects in situ and improve cartilage repair as shown by Safranin-O, collagen II immunostaining, and cumulative histology. In this small animal model, the full-thickness critically-sized defect provided access to the marrow, similar in concept to abrasion arthroplasty or spongialization in large animal models, and suggests that combining KLD with these techniques may improve current practice.
Fibrin glue created from a patient's own blood can be used as a carrier to deliver cells to the specific site of an injury. An experimental model for optimizing various permutations of this delivery system in vivo was tested in this study. Harvested equine meniscal sections were reapposed with fibrin glue or fibrin glue and equine bone marrow-derived mesenchymal stem cells (BMSCs). These constructs were then implanted subcutaneously in nude mice. After harvesting of the constructs, BMSC containing constructs showed significantly increased vascularization, and histology showed subjectively decreased thickness of repair tissue and increased total bonding compared to fibrin alone constructs. This model allowed direct comparison of different meniscal treatment groups while using a small number of animals. This in vivo model could be valuable in the future to optimize fibrin and cellular treatments for meniscal lesions in the horse and potentially humans as well.
Administration of a subanesthetic dosage of ketamine with xylazine and butorphanol may facilitate certain procedures, such as insertion of a dental float, in horses and enhance tolerance to pressure stimulation, but it may worsen responses to acute pain, such as that caused by a needle prick. Further evaluation is needed to determine whether subanesthetic dosages of ketamine might be useful when performing certain clinical procedures in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.