X-ray analysis of the pancreatic hormone glucagon shows that in crystals the polypeptide adopts a mainly helical conformation, which is stabilised by hydrophobic interactions between molecules related by threefold symmetry. A model is presented in which the glucagon molecule exists in dilute solutions as an equilibrium population of conformers with little retention of conformers with little retention of structure, and in which the helical conformation is stablised by hydrophobic interactions either as an oligomer or as a complex with the receptor.
The crystal structure of a left-handed Z-DNA hexamer duplex d(CGCGCG) 2 has been solved based on the anomalous diffraction signal of inherent P atoms using data collected at the single wavelength of 1.54 A Ê . The anomalous signal of about 2% of the total diffracted intensity, constant for all nucleic acids, may be generally useful for solving crystal structures of DNA and RNA oligomers. The multiplicity of intensity measurements is shown to crucially affect the data quality and the ability to solve the phase problem. The anisotropic model re®ned to an R factor of 8.9% at 0.95 A Ê resolution.
The molecular and crystal structure of 2'-O-Me (CGCGCG)2 has been determined using synchrotron radiation at near-atomic resolution (1.30 A), the highest resolution to date in the RNA field. The crystal structure is a half-turn A-type helix with some helical parameters deviating from canonical A-RNA, such as low base pair rise, elevated helical twist and inclination angles. In CG steps, inter-strand guanines are parallel while cytosines are not parallel. In steps GC this motif is reversed. This type of regularity is not seen in other RNA crystal structures. The structure includes 44 water molecules and two hydrated Mg2+ions one of which lies exactly on the crystallographic 2-fold axis. There are distinct patterns of hydration in the major and the minor grooves. The major groove is stabilised by water clusters consisting of fused five- and six-membered rings. Minor groove contains only a single row of water molecules; each water bridges either two self-parallel cytosines or two self-parallel guanines by a pair of hydrogen bonds. The structure provides the first view of the hydration scheme of 2'-O-methylated RNA duplex.
The crystal and molecular structure of 2'-O-Me(CGCGCG)(2) has been determined at 1.19 A resolution, at 100 K, using synchrotron radiation. The structure in space group P3(2)12 is a half-turn right-handed helix that includes two 2-methyl-2,4-pentanediol (MPD) molecules bound in the minor groove. The structure deviates from A-form RNA. The duplex is overwound with an average value of 9.7 bp per turn, characterised as having a C3'-endo sugar pucker, very low base pair rise and high helical twist and inclination angles. The structure includes 65 ordered water molecules. Only a single row of water molecules is observed in the minor groove due to the presence of hydrophobic 2'-O-methyl groups. As many as five magnesium ions are located in the structure. Two are in the major groove and interact with O(6) and N(7) of guanosine and N(4) of cytidine residues through their hydration spheres. This work provides the first example of molecular interactions of nucleic acids with MPD, which was used as a precipitant, cryo-solvent and resolution enhancing agent. The two MPD molecules intrude into the hydration network in the minor groove, each forming hydrogen bonds between their secondary hydroxyl group and exo-amino functions of guanosine residues. Comparison of the 2'-O-Me(CGCGCG)(2) structure in the P3(2)12 and P6(1)22 crystals delineates stability of the water network within the minor groove to dehydration by MPD and is of interest for evaluating factors governing small molecule binding to RNA. Intrusion of MPD into the minor groove of 2'-O-Me(CGCGCG)(2) is discussed with respect to RNA dehydration, a prerequisite of Z-RNA formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.