Cortical excitability depends on sleep-wake regulation, is central to cognition and hasbeen implicated in age-related cognitive decline. The dynamics of cortical excitability during prolonged wakefulness in aging are unknown, however. Here, we repeatedly probed cortical excitability of the frontal cortex using transcranial magnetic stimulation and electroencephalography in thirteen young and twelve older healthy participants during sleep deprivation. While overall cortical excitability did not differ between age groups, the magnitude of cortical excitability variations during prolonged wakefulness was dampened in older individuals. This age-related dampening was associated with mitigated neurobehavioural consequences of sleep loss on executive functions. Furthermore, higher cortical excitability was potentially associated with better and lower executive performance, respectively in older and younger adults. The dampening of cortical excitability dynamics found in older participants likely arises from a reduced impact of sleep homeostasis and circadian processes. It may reflect reduced brain adaptability underlying reduced cognitive flexibility in aging. Future research should confirm preliminary associations between cortical excitability and behaviour, and address whether maintaining cortical excitability dynamics can counteract agerelated cognitive decline.
Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation) and individual characteristics (intellectual quotient). Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way.
Arousals during sleep are transient accelerations of the EEG signal, considered to reflect sleep perturbations associated with poorer sleep quality. They are typically detected by visual inspection, which is time consuming, subjective, and prevents good comparability across scorers, studies and research centres. We developed a fully automatic algorithm which aims at detecting artefact and arousal events in whole-night EEG recordings, based on time-frequency analysis with adapted thresholds derived from individual data. We ran an automated detection of arousals over 35 sleep EEG recordings in healthy young and older individuals and compared it against human visual detection from two research centres with the aim to evaluate the algorithm performance. Comparison across human scorers revealed a high variability in the number of detected arousals, which was always lower than the number detected automatically. Despite indexing more events, automatic detection showed high agreement with human detection as reflected by its correlation with human raters and very good Cohen’s kappa values. Finally, the sex of participants and sleep stage did not influence performance, while age may impact automatic detection, depending on the human rater considered as gold standard. We propose our freely available algorithm as a reliable and time-sparing alternative to visual detection of arousals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.