Apolipoprotein E is a genetic risk factor for Alzheimer's disease, and the apoE protein is associated with b-amyloid deposits in Alzheimer's disease brain. We examined signaling pathways stimulated by apoE in primary neurons in culture. ApoE and an apoE-derived peptide activated several intracellular kinases, including prominently extracellular signalregulated kinase 1/2 (ERK1/2). ERK1/2 activation by apoE was blocked by an inhibitor of the low-density lipoprotein receptor family, the specific NMDA glutamate receptor antagonist MK 801 and other calcium channel blockers. Activation of apoE receptors also induced tyrosine phosphorylation of Dab1, an adaptor protein of apoE receptors, but experiments in Dab1 knockout neurons demonstrated that Dab1 was not necessary for ERK activation. In contrast, apoE treatment of primary neurons decreased activation of c-Jun N-terminal kinase, a kinase that interacts with another apoE receptor adaptor protein, c-Jun N-terminal kinase-interacting protein. This change also depended on interactions with the low-density lipoprotein receptor family but was independent of calcium channels. c-Jun N-terminal kinase deactivation by apoE was blocked by c-secretase inhibitors and pertussis toxin. These results demonstrate that apoE affects several signaling cascades in neurons: increased disabled phosphorylation, activation of the ERK1/2 pathway (dependent on calcium influx via the NMDA receptor) and inhibition of the c-Jun N-terminal kinase 1/2 pathway (dependent on c-secretase and G proteins).
A fundamental question in the formation of the nervous system is the extent to which a neurotransmitter contributes to the development of the neurons that synthesize and release it. A complementary question is whether neurotransmitter signaling contributes to the development of postsynaptic targets. Prior studies have suggested that adrenergic signaling may promote adrenergic neuronal proliferation or survival and may be critical for the postnatal development of the cerebellum. To test these possibilities genetically, we studied mice that are unable to synthesize norepinephrine and epinephrine (NE/E), the endogenous adrenergic receptor ligands, due to a disruption the gene for dopamine beta-hydroxylase. These mice develop postnatally in the absence of NE/E. Here we report that the adrenergic neurons of these mutant mice are present in normal numbers and locations and exhibit typical innervation patterns throughout the central nervous system (CNS), as assessed by immunostaining for tyrosine hydroxylase and the NE transporter. Furthermore, cerebellar cortical development (size, foliation, layering, cell number, and position), which proceeds to a large degree postnatally, is unaltered in the mutants. These results indicate that the fate and innervation pattern of the adrenergic neurons, as well as the development of the cerebellum, do not depend on postnatal signaling by NE/E. The results also suggest that when restoration of adrenergic signaling is performed in this mutant mouse model (by administering a synthetic precursor of NE), reversal of phenotypes is due to the synthesis and release of NE/E from adrenergic terminals that are distributed normally within the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.