Xyloglucans are the principal glycans that interlace cellulose microfibrils in most flowering plants. The mur3 mutant of Arabidopsis contains a severely altered structure of this polysaccharide because of the absence of a conserved ␣ -L -fucosyl-(1 → 2)- -D -galactosyl side chain and excessive galactosylation at an alternative xylose residue. Despite this severe structural alteration, mur3 plants were phenotypically normal and exhibited tensile strength in their inflorescence stems comparable to that of wild-type plants. The MUR3 gene was cloned positionally and shown to encode a xyloglucan galactosyltransferase that acts specifically on the third xylose residue within the XXXG core structure of xyloglucan. MUR3 belongs to a large family of type-II membrane proteins that is evolutionarily conserved among higher plants. The enzyme shows sequence similarities to the glucuronosyltransferase domain of exostosins, a class of animal glycosyltransferases that catalyze the synthesis of heparan sulfate, a glycosaminoglycan with numerous roles in cell differentiation and development. This finding suggests that components of the plant cell wall and of the animal extracellular matrix are synthesized by evolutionarily related enzymes even though the structures of the corresponding polysaccharides are entirely different from each other.
Functional analysis of the Plasmodium falciparum genome is restricted because of the limited ability to genetically manipulate this important human pathogen. We have developed an efficient transposon-mediated insertional mutagenesis method much needed for high-throughput functional genomics of malaria parasites. A drug-selectable marker, human dihydrofolate reductase, added to the lepidopteran transposon piggyBac, transformed parasites by integration into the P. falciparum genome in the presence of a transposase-expressing helper plasmid. Multiple integrations occurred at the expected TTAA target sites throughout the genome of the parasite. We were able to transform P. falciparum with this piggyBac element at high frequencies, in the range of 10 ؊3 , and obtain stable clones of insertional mutants in a few weeks instead of 6 -12 months. Our results show that the piggyBac transposition system can be used as an efficient, random integration tool needed for large-scale, whole-genome mutagenesis of malaria parasites. The availability of such an adaptable genetic tool opens the way for much needed forward genetic approaches to study this lethal human parasite.
The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans (GAXs), and mixed-linkage -glucans, together with smaller amounts of xyloglucans, glucomannans, pectins, and a network of polyphenolic substances. Chemical imaging by Fourier transform infrared microspectroscopy revealed large differences in the distributions of many chemical species between different tissues of the maize (Zea mays) coleoptile. This was confirmed by chemical analyses of isolated outer epidermal tissues compared with mesophyll-enriched preparations. Glucomannans and esterified uronic acids were more abundant in the epidermis, whereas -glucans were more abundant in the mesophyll cells. The localization of -glucan was confirmed by immunocytochemistry in the electron microscope and quantitative biochemical assays. We used field emission scanning electron microscopy, infrared microspectroscopy, and biochemical characterization of sequentially extracted polymers to further characterize the cell wall architecture of the epidermis. Oxidation of the phenolic network followed by dilute NaOH extraction widened the pores of the wall substantially and permitted observation by scanning electron microscopy of up to six distinct microfibrillar lamellae. Sequential chemical extraction of specific polysaccharides together with enzymic digestion of -glucans allowed us to distinguish two distinct domains in the grass primary wall. First, a -glucan-enriched domain, coextensive with GAXs of low degrees of arabinosyl substitution and glucomannans, is tightly associated around microfibrils. Second, a GAX that is more highly substituted with arabinosyl residues and additional glucomannan provides an interstitial domain that interconnects the -glucan-coated microfibrils. Implications for current models that attempt to explain the biochemical and biophysical mechanism of wall loosening during cell growth are discussed.Biochemical studies have provided a reasonably complete catalog of the major polysaccharides and phenolic substances that constitute the primary cell walls of angiosperms (McCann and Roberts, 1991;Carpita and Gibeaut, 1993). The walls of grasses and related monocots (commelinoids) have quite different compositions compared with those of all dicots and of the non-commelinoid monocot species (Carpita, 1996). The "type II" cell walls of commelinoid monocots are characterized by cellulose microfibrils cross-linked by glucuronoarabinoxylans (GAXs) and a network of polyphenolic substances (Carpita and Gibeaut, 1993;Carpita, 1996). Maize (Zea mays) and other members of the Poales also contain developmentally regulated polymers, the mixed-linkage (133),(134)--dglucans (hereafter, called -glucans). The -glucans are initially absent from meristematic cells but accumulate up to about 20% dry mass of the cell wall coincident with the most rapid rates of coleoptile elongation (Kim et al., 2000). As the elongation rate slows, the -glucan is hydrolyzed by exo-and endo--d-glucanases located in the wall. Concomitant with th...
BackgroundMuch of the Plasmodium falciparum genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the Plasmodium genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the Plasmodium genome.ResultsIn this study, we investigated the lepidopteran transposon, piggyBac, as a molecular genetic tool for functional characterization of the Plasmodium falciparum genome. Through multiple transfections, we generated 177 unique P. falciparum mutant clones with mostly single piggyBac insertions in their genomes. Analysis of piggyBac insertion sites revealed random insertions into the P. falciparum genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in P. falciparum with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development.ConclusionOur results clearly demonstrate that piggyBac is a novel, indispensable tool for forward functional genomics in P. falciparum that will help better understand parasite biology and accelerate drug and vaccine development.
Based on environmental challenges or altered genetic composition, Drosophila larvae can produce up to three types of blood cells that express genetic programs essential for their distinct functions. Using transcriptional enhancers for genes expressed exclusively in plasmatocytes, crystal cells, or lamellocytes, several new hemocyte-specific enhancer-reporter transgenes were generated to facilitate the analysis of Drosophila hematopoiesis. This approach took advantage of fluorescent variants of insulated P-element reporter vectors for multilabeling cell analyses; two additional color variants were generated in these studies. These vectors were successfully used to produce transgenic fly lines that label specific hemocyte lineages with separate colors. Combining three transgene reporters allowed for the unambiguous identification of plasmatocytes, crystal cells, and lamellocytes within a complex hemocyte population. While this work focused on the hematopoietic process, these new vectors can be used to mark multiple cell types or trace complex cell lineages during any chosen aspect of Drosophila development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.