Summary 1The structure and functioning of riverine ecosystems is dependent upon regional setting and the interplay of hydrologic regime and geomorphologic processes. We used a retrospective analysis to study recruitment along broad, alluvial valley segments (parks) and canyon segments of the unregulated Yampa River and the regulated Green River in the upper Colorado River basin, USA. We precisely aged 811 individuals of Populus deltoides ssp. wislizenii (native) and Tamarix ramosissima (exotic) from 182 wooded patches and determined the elevation and character of the germination surface for each. We used logistic regression to relate recruitment events (presence or absence of cohort) to five flow and two weather parameters. 2 Woody plant establishment occurred via multiple pathways at patch, reach and segment scales. Recruitment occurred through establishment on (1) vertically accreting bars in the unregulated alluvial valley, (2) high alluvial floodplain surfaces during rare large flood events, (3) vertically accreting channel margin deposits in canyon pools and eddies, (4) vertically accreting intermittent/abandoned channels, (5) low elevation gravel bars and debris fans in canyons during multi-year droughts, and (6) bars and channels formed prior to flow regulation on the dammed river during controlled flood events. 3 The Yampa River's peak flow was rarely included in models estimating the likelihood that recruitment would occur in any year. Flow variability and the interannual pattern of flows, rather than individual large floods, control most establishment. 4 Regulation of the Green River flow since 1962 has had different effects on woody vegetation recruitment in canyons and valleys. The current regime mimics drought in a canyon setting, accelerating Tamarix invasion whereas in valleys the ongoing geomorphic adjustment of the channel, combined with reduced flow variability, has nearly eliminated Populus establishment . 5 A single year's flow or a particular pattern of flows over a sequence of years, whether natural or man-made, produces different recruitment opportunities in alluvial and canyon reaches, in diverse landforms within a particular river reach, and for Populus and Tamarix . The design of flows to restore riparian ecosystems must consider these multiple pathways and adjust the seasonal timing, magnitude and interannual frequency of flows to match the desired outcome.
Declines in cottonwood (Populus spp.) recruitment along alluvial reaches of large rivers in arid regions of the western United States have been attributed to modified flow regimes, lack of suitable substrate, insufficient seed rain, and increased interspecific competition. We evaluated whether and how these factors were operating during 1993–1996 to influence demographics of Fremont cottonwood (P. deltoides Marshall subsp. wislizenii (Watson) Eckenwalder) along reaches of the Green and Yampa Rivers near their confluence in northwestern Colorado. We examined seedling establishment, defined as survival through three growing seasons, at three alluvial reaches that differed primarily in the level of flow regulation: a site on the unregulated Yampa, an upper Green River site regulated by Flaming Gorge Dam, and a lower Green River site below the Green–Yampa confluence. Seed rain was abundant in all sites, and led to large numbers of germinants (first‐year seedlings) appearing each year at all sites. The regulated flow in the upper Green River reach restricted germination to islands and cut banks that were later inundated or eroded; no seedlings survived there. Mortality at the lower Green River site was due largely to desiccation or substrate erosion; 23% of 1993 germinants survived their first growing season, but at most 2% survived through their second. At the Yampa River site, germinants appeared on vegetated and unvegetated surfaces up to 2.5 m above base flow stage, but survived to autumn only on bare surfaces at least 1.25 m above base flow stage, and where at least 10 of the upper 40 cm of the alluvium was fine‐textured. Our studies of rooting depths and the stable isotopic composition of xylem water showed that seedlings in the most favorable locations for establishment at the Yampa site do not become phreatophytic until their third or fourth growing season. Further, the results of experimental field studies examining effects of shade and competition supported the hypothesis that insufficient soil moisture, possibly in combination with insufficient light, restricts establishment to unvegetated sites. Collectively, the demographic and experimental studies suggest that, in arid regions, soil water availability is at least as important as light level in limiting establishment of Fremont cottonwood seedlings. We hypothesize that in cases where arid land rivers experience large spring stage changes, recruitment is further constrained within bare areas to those sites that contain sufficient fine‐textured alluvium, saturated during the spring flood, to provide the flood‐derived soil moisture normally necessary for late‐summer seedling survival. Copyright © 1999 John Wiley & Sons, Ltd.
Summary 1. Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. 2. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. 3. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one‐ and two‐dimensional river hydraulics models to estimate stage–discharge relationships at the whole‐river and local scales, respectively, and (3) a groundwater model to estimate surface‐ and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. 4. An example of a coupled, hydrology‐ecology model is the Ecosystems Function Model, which we used to link a one‐dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow‐adapted benthic macroinvertebrate groups. 5. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks.
Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO 2 concentrations ([CO 2 ]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO 2 ], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO 2 ] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesirable ecological change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.