The sterilization of scaffolds is an essential step for tissue engineering in vitro and, mainly, clinical biomaterial use. However, this process can cause changes in the structure and surface of the scaffolds. Therefore, the objective of this study was to investigate the effect of sterilization by ethanol, ultraviolet radiation (UVR) or antimicrobial solution (AMS) on poly(lactide-co-glycolide) (PLGA) scaffolds produced by the electrospinning technique. The properties of nanofibers and the cellular adhesion of mesenchymal stem cells to the scaffolds were analyzed after the treatments. All methods generated sterile scaffolds but showed some kind of damage to the scaffolds. Ethanol and AMS caused changes in the morphology and scaffold dimensions, which were not observed when using the UVR method. However, UVR caused a greater reduction in polymeric molecular weight, which increased proportionally with exposure time of treatment. Nanofibers sterilized with AMS for 1 h and 2 h showed greater cellular adhesion than the other methods, demonstrating their potential as a method for sterilizing PLGA nanofibers.
In severe cases of peripheral arterial disease, tissue loss can occur and the use of vascular grafts can be necessary. However, currently, there are no suitable substitutes for application in small diameter vessels. The aim of this work has been to produce scaffolds with adequate properties for application as vascular substitutes. Polycaprolactone scaffolds were produced by the electrospinning technique. The surface of the scaffolds was functionalized with heparin and vascular endothelial growth factor (VEGF) and their physical-chemical properties were characterized. Human endothelial progenitor cells (EPCs) or mesenchymal stem cells (MSCs) were seeded onto the surface of the scaffolds in order to create an endothelial layer. The electrospun scaffolds exhibited mechanical properties compatible with the native arteries. The presence of heparin prevented blood coagulation on the scaffold surface. The presence of heparin and VEGF favored the adaptation of MSCs and EPCs on the scaffolds in relation to the non functionalized scaffolds. In addition, the EPCs cultivated on the scaffolds maintained the expression of CD31, CD34 and VE-cadherin genes. The results obtained in the present study suggest that electrospun scaffolds functionalized with heparin and VEGF can be applied in vascular tissue engineering. These scaffolds exhibited antithrombogenic properties and favored the development of cells on their surface. The association of heparin and VEGF with electrospun scaffolds increased EPC proliferation, favoring the formation of the endothelial layer and the regeneration of damaged vessels.
Materials, such as biopolymers, can be applied to produce scaffolds as mechanical support for cell growth in regenerative medicine. Two examples are polycaprolactone (PCL) and poly (lactic-coglycolic acid) (PLGA), both used in this study to evaluate the behavior of umbilical cord-derived mesenchymal stem cells. The scaffolds were produced by the 3D printing technique using PCL as a polymer covered with PLGA fibers obtained by electrospinning. The cells were seeded in three concentrations: 8.5×10 3 ; 25.5×10 3 and 51.0×10 3 on the two surfaces of the scaffolds. With scanning electron microscopy (SEM), it was observed that the electrospun fibers were integrated into the 3D printed matrices. Confocal laser scanning microscopy and SEM confirmed the presence of attached cells and the lactate dehydrogenase release test showed the scaffolds were not cytotoxic. The cells were able to differentiate into osteogenic and chondrogenic lineages on the scaffolds. Mechanical test showed that the cells seeded on the 3D printed PCL matrices coated with PLGA electrospun nanofibers (3D+ES+SC) did not show significant difference in tensile modulus than the pure PCL matrix (3D) or PCL matrices coated with PLGA electrospun nanofibers (3D+ES). The combination of the two polymers facilitated the production of a support with greater mechanical stability due to the presence of the 3D printed PCL matrices fabricated by melted filaments and greater cell adhesion due to the PLGA fibers. The scaffolds are suitable for use in cell therapy and also for tissue regeneration purposes.
Tricloreto de índio na presença de hipoclorito de sódio promove a cloração alílica de olefinas terminais em meio bifásico (diclorometano/água) com bons rendimentos. Para estabelecer um procedimento geral, escolheu-se a carvona como composto modelo e otimizou-se a estequiometria, temperatura, e tempo de conversão para o respectivo cloreto alílico. Tratando-se β-pineno com tricloreto de índio/hipoclorito de sódio obteve-se seletivamente o cloreto perílico, um precursor importante para a obtenção de derivados de limoneno oxigenados no carbono C-7.Indium trichloride promotes the chlorination of terminal olefins in the presence of sodium hypochlorite with good results. Carvone was chosen as a model compound to examine some of the general features of this reaction, such as stoichiometry, temperature, reaction time and product conversion. Treatment of β-pinene with sodium hypochlorite in the presence of indium trichloride resulted in a facile rearrangement to selectively yield perillyl chloride, which is an important precursor for C-7 oxygenated limonenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.