BackgroundThe perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli.Methods and FindingsLingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1β, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-β2, the δ-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as β-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1β, PKD2L1, phospholipase C-β2, and δ-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells.ConclusionsThese data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals (“natural knockouts”) suggests a cell lineage for sour that is independent of the other taste modalities.
Background: The channel catfish, Ictalurus punctatus, is invested with a high density of cutaneous taste receptors, particularly on the barbel appendages. Many of these receptors are sensitive to selected amino acids, one of these being a receptor for L-arginine (L-Arg). Previous neurophysiological and biophysical studies suggested that this taste receptor is coupled directly to a cation channel and behaves as a ligand-gated ion channel receptor (LGICR). Earlier studies demonstrated that two lectins, Ricinus communis agglutinin I (RCA-I) and Phaseolus vulgaris Erythroagglutinin (PHA-E), inhibited the binding of L-Arg to its presumed receptor sites, and that PHA-E inhibited the L-Arg-stimulated ion conductance of barbel membranes reconstituted into lipid bilayers.
Monellin is a protein that tastes sweet. In the native state it is a dimer composed of two dissimilar noncovalently associated polypeptides. The conformation of the protein is a determinant of its sweetness, and the present investigation takes advantage of the fluorescence spectrum being a sensitive index of its conformation. The emission spectrum is used to evaluate the ability of temperature and pH to alter the conformation and the sweetness of the protein.When monellin dissolved in water is heated in discrete steps from 25 to 100°C, its sweetness decreases. The halfwidth of the fluorescence emission band increases in parallel with the loss of sweetness. The increase in halfwidth is due primarily to an increase in the intensity of tyrosine emission that may be the result of the two dissimilar polypeptides of monellin begnning to separate. Tyrosine residues are present in both chains, while the single tryptophan occurs in only one. Monellin is less susceptible to denaturation by increasing temperature when dissolved in sodium acetate buffer at pH 4 than it is at pH 3 or 7. When the pH of a solution containing monellin in 0.1 M KCI is vaned from 2 to 13, there is a broad pH range (pH 4 to 9) where monellin's conformation is not markedly altered. Below pH 3.5 and above pH 10.5, however, the emission spectra indicate that substantial denaturation occurs. However, monellin can be partially renatured following pH 12 treatment with only minimal loss of sweetness. The sweetness of monellin under these two types of denaturing conditions, temperature and pH, can be predicted by the fluorescence emission spectrum of the protein. In addition, this study confirms that the biological activity of monellin, its sweetness, is a function of quaternary Structure O f the protein. 62
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.