To identify predictors of left ventricular remodelling (LVR) post-myocardial infarction (MI) and related molecular signatures, a porcine model of closed-chest balloon MI was used along with serial cardiac magnetic resonance imaging (CMRI) up to 5–6 weeks post-MI. Changes in myocardial strain and strain rates were derived from CMRI data. Tissue proteomics was compared between infarcted and non-infarcted territories. Peak values of left ventricular (LV) apical circumferential strain (ACS) changed over time together with peak global circumferential strain (GCS) while peak GLS epicardial strains or strain rates did not change over time. Early LVR post-MI enhanced abundance of 39 proteins in infarcted LV territories, 21 of which correlated with LV equatorial circumferential strain rate. The strongest associations were observed for D-3-phosphoglycerate dehydrogenase (D-3PGDH), cysteine and glycine-rich protein-2, and secreted frizzled-related protein 1 (sFRP1). This study shows that early changes in regional peak ACS persist at 5–6 weeks post-MI, when early LVR is observed along with increased tissue levels of D-3PGDH and sFRP1. More studies are needed to ascertain if the observed increase in tissue levels of D-3PGDH and sFRP1 might be casually involved in the pathogenesis of adverse LV remodelling.
Purpose Volume indices and left ventricular ejection fraction (LVEF) are routinely used to assess cardiac function. Ventricular strain values may provide additional diagnostic information, but their reproducibility is unclear. This study therefore compares the repeatability and reproducibility of volumes, volume fraction, and regional ventricular strains, derived from cardiovascular magnetic resonance (CMR) imaging, across three software packages and between readers. Methods Seven readers analysed 16 short-axis CMR stacks of a porcine heart. Endocardial contours were manually drawn using OsiriX and Simpleware ScanIP and repeated in both softwares. The images were also contoured automatically in Circle CVI42. Endocardial global, apical, mid-ventricular, and basal circumferential strains, as well as end-diastolic and end-systolic volume and LVEF were compared. Results Bland-Altman analysis found systematic biases in contour length between software packages. Compared to OsiriX, contour lengths were shorter in both ScanIP (-1.9 cm) and CVI42 (-0.6 cm), causing statistically significant differences in end-diastolic and end-systolic volumes, and apical circumferential strain (all p<0.006). No differences were found for mid-ventricular, basal or global strains, or left ventricular ejection fraction (all p<0.007). All CVI42 results lay within the ranges of the OsiriX results. Intra-software differences were found to be lower than inter-software differences. Conclusion OsiriX and CVI42 gave consistent results for all strain and volume metrics, with no statistical differences found between OsiriX and ScanIP for mid-ventricular, global or basal strains, or left ventricular ejection fraction. However, volumes were influenced by the choice of contouring software, suggesting care should be taken when comparing volumes across different software.
To identify early predictors of late left ventricular remodelling (LVR) post-myocardial infarction (MI) and related molecular signatures, a porcine model of closed-chest balloon MI was used. LVR was assessed by cardiac magnetic resonance imaging (CMRI) at baseline, 12–48 hours (acute), and 5–6 weeks (chronic) post-MI. Changes in myocardial strain and strain rates were derived from CMRI data. Tissue proteomics was compared between infarcted and non-infarcted territories. Peak values of left ventricular (LV) apical circumferential strain (ACS) changed over time together with peak global circumferential strain (GCS) while peak GLS epicardial strains or strain rates did not change over time. LVR post-MI enhanced abundance of 39 proteins in infarcted LV territories,21 of which correlated with LV equatorial circumferential strain rate (ECSR). The strongest associations were observed for D-3-phosphoglycerate dehydrogenase (D-3PGDH), cysteine and glycine-rich protein-2 (CG-RP-2), and secreted frizzled-related protein 1 (sFRP1). Results indicate that early changes in regional peak ACS predict late LV remodelling and LVR post-MI is associated with augmented levels of D-3PGDH and sFRP1, which show the strongest association with peak ECSR. These findings might help to prevent LVR post-MI by influencing/directing LV unloading strategies or by pharmacological control of tissue levels of D-3PGDH and sFRP1.
In a porcine experimental model of myocardial infarction, a localised, layer‐specific, circumferential left ventricular strain metric has been shown to indicate chronic changes in ventricular function post‐infarction more strongly than ejection fraction. This novel strain metric might therefore provide useful prognostic information clinically. In this study, existing clinical volume indices, global strains, and the novel, layer‐specific strain were calculated for a large human cohort to assess variations in ventricular function and morphology with age, sex, and health status. Imaging and health data from the UK Biobank were obtained, including healthy volunteers and those with a history of cardiovascular illness. In total, 710 individuals were analysed and stratified by age, sex and health. Significant differences in all strain metrics were found between healthy and unhealthy populations, as well as between males and females. Significant differences in basal circumferential strain and global circumferential strain were found between healthy males and females, with males having smaller absolute values for both (all p≤ 0.001). There were significant differences in the functional variables left ventricular ejection fraction, end‐systolic volume, end‐systolic volume index and mid‐ventricular circumferential strain between healthy and unhealthy male cohorts aged 65–74 (all p≤ 0.001). These results suggest that whilst regional circumferential strains may be useful clinically for assessing cardiovascular health, care must be taken to ensure critical values are indexed correctly to age and sex, due to the differences in these values observed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.