Abstract. Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel unsupervised algorithm for outlier detection with a solid statistical foundation is proposed. First we modify a nonparametric density estimate with a variable kernel to yield a robust local density estimation. Outliers are then detected by comparing the local density of each point to the local density of its neighbors. Our experiments performed on several simulated data sets have demonstrated that the proposed approach can outperform two widely used outlier detection algorithms (LOF and LOCI).
Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper's ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper's ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25-1000 lm)
Reliable diagnosis of depressive disorder is essential for both optimal treatment and prevention of fatal outcomes. This study aimed to elucidate the effectiveness of two non-linear measures, Higuchi's Fractal Dimension (HFD) and Sample Entropy (SampEn), in detecting depressive disorders when applied on EEG. HFD and SampEn of EEG signals were used as features for seven machine learning algorithms including Multilayer Perceptron, Logistic Regression, Support Vector Machines with the linear and polynomial kernel, Decision Tree, Random Forest, and Naı ¨ve Bayes classifier, discriminating EEG between healthy control subjects and patients diagnosed with depression. This study confirmed earlier observations that both non-linear measures can discriminate EEG signals of patients from healthy control subjects. The results suggest that good classification is possible even with a small number of principal components. Average accuracy among classifiers ranged from 90.24 to 97.56%. Among the two measures, SampEn had better performance. Using HFD and SampEn and a variety of machine learning techniques we can accurately discriminate patients diagnosed with depression vs controls which can serve as a highly sensitive, clinically relevant marker for the diagnosis of depressive disorders.
Outlier detection has recently become an important problem in many data mining applications. In this paper, a novel unsupervised algorithm for outlier detection is proposed. First we apply a provably globally optimal Expectation Maximization (EM) algorithm to fit a Gaussian Mixture Model (GMM) to a given data set. In our approach, a Gaussian is centered at each data point, and hence, the estimated mixture proportions can be interpreted as probabilities of being a cluster center for all data points. The outlier factor at each data point is then defined as a weighted sum of the mixture proportions with weights representing the similarities to other data points. The proposed outlier factor is thus based on global properties of the data set. This is in contrast to most existing approaches to outlier detection, which are strictly local. Our experiments performed on several simulated and real life data sets demonstrate superior performance of the proposed approach. Moreover, we also demonstrate the ability to detect unusual shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.