A method is proposed for generating synthetic mammograms based upon simulations of breast tissue and the mammographic imaging process. A computer breast model has been designed with a realistic distribution of large and medium scale tissue structures. Parameters controlling the size and placement of simulated structures (adipose compartments and ducts) provide a method for consistently modeling images of the same simulated breast with modified position or acquisition parameters. The mammographic imaging process is simulated using a compression model and a model of the x-ray image acquisition process. The compression model estimates breast deformation using tissue elasticity parameters found in the literature and clinical force values. The synthetic mammograms were generated by a mammogram acquisition model using a monoenergetic parallel beam approximation applied to the synthetically compressed breast phantom.
The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.
We have evaluated a method for synthesizing mammograms by comparing the texture of clinical and synthetic mammograms. The synthesis algorithm is based upon simulations of breast tissue and the mammographic imaging process. Mammogram texture was synthesized by projections of simulated adipose tissue compartments. It was hypothesized that the synthetic and clinical texture have similar properties, assuming that the mammogram texture reflects the 3D tissue distribution. The size of the projected compartments was computed by mathematical morphology. The texture energy and fractal dimension were also computed and analyzed in terms of the distribution of texture features within four different tissue regions in clinical and synthetic mammograms. Comparison of the cumulative distributions of the mean features computed from 95 mammograms showed that the synthetic images simulate the mean features of the texture of clinical mammograms. Correlation of clinical and synthetic texture feature histograms, averaged over all images, showed that the synthetic images can simulate the range of features seen over a large group of mammograms. The best agreement with clinical texture was achieved for simulated compartments with radii of 4-13.3 mm in predominantly adipose tissue regions, and radii of 2.7-5.33 and 1.3-2.7 mm in retroareolar and dense fibroglandular tissue regions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.