We demonstrate a system-level low-power contactless button using MEMS ScAlN-based pyroelectric detector. As pyroelectric detectors can sense instantaneous temperature change, the human finger can act as a thermal source to activate the button. Using our in-house fabricated ScAlN-based pyroelectric detector which does not require any IR source, we package it into a contactless button system designed with electrical read-out circuits and signal processing. This contactless button system could detect the presence of a finger at a center distance measured up to ~4 cm away, ~2 cm radius circle area, suitable for application as contactless elevator button. Our contactless button system using ScAlN-based pyroelectric effect is characterized, tested and compared with a commercial contactless button. The power consumed is measured ~3.5× lower than that of commercial contactless button. The results obtained provide a potential solution towards energy efficient low-power contactless button system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.