Abstract. Facilitation of the establishment of certain plant species by nurse plants is a common phenomenon in arid and semiarid ecosystems. The most commonly reported mechanisms of facilitation include cooler temperatures and increased soil nutrients beneath the nurse plant canopy, which favor establishment of other plant species. During conversion of upland grasslands to thorn woodland in southern Texas, Prosopis glandulosa appears to facilitate establishment of other woody plants, including Celtis pallida, whereas Acacia smallii occurs only in habitats between P. glandulosa canopies. We tested the hypothesis that light intensity and soils under P. glandulosa canopies facilitate seedling emergence and growth of C. pallida but inhibit seedling emergence and growth of A. smallii. In the field, C. pallida and A. smallii seeds were planted under P. glandulosa canopies and in adjacent interspaces. Percent emergence of C. pallida seedlings was greater under the canopy of P. glandulosa, whereas percent emergence of A. smallii seedlings was greater in interspaces. In a greenhouse experiment, seeds of each species were planted in pots filled with soil from under P. glandulosa canopies or from adjacent interspaces. Two treatments, shade and sunlight, were imposed and plants harvested seven weeks later. Seedling mass of both species was greater in canopy soil than in interspace soil in sunlight but mass of the two species did not differ between soil sources in shade. Canopy soils contained more total and available nitrogen than interspace soils. These results suggest that light is more limiting than nutrients under shaded conditions and so neither species can take advantage of the high nutrients beneath P. glandulosa. Shade and greater soil nutrients beneath P. glandulosa do not appear to be the major factors that facilitate C. pallida or inhibit A. smallii. Aggregation of C. pallida beneath P. glandulosa canopies appears to be a complex process that involves both passive facilitation (seed dispersal by birds) and active facilitation (reduction of seed dormancy by under‐canopy temperatures) operating only during the seed germination stage with successional mechanisms other than facilitation operating during later stages of shrub establishment and growth.
This study was undertaken to characterize the pectin from four citrus species and to determine their in vitro inhibitory activities on the binding of fibroblast growth factor (FGF) to the FGF receptor (FGFR). Pectin from various parts of lemon, grapefruit, tangerine, and orange were isolated and characterized. Tangerine had the highest pectin content among the four citrus species. Segment membrane contained as much as or more pectin than flavedo/albedo. Anhydrogalacturonic content was highest in pectin from segment membrane of tangerine and flavedo/albedo of grapefruit. Lemon pectin contained the highest methoxyl content (MC), and grapefruit contained the largest proportion of lower molecular weight (<10000 Da) pectin. Tangerine contained the highest neutral sugar in both flavedo/albedo and segment membrane. The interdependency of heparin on factor-receptor interaction provides a means for identifying new antagonists of growth factor activity and thus for treatment of various diseases. These results showed that pectin significantly inhibited the binding of FGF-1 to FGFR1 in the presence of 0.1 microg/mL heparin. The pectin from the segment membrane of lemon was the most potent inhibitor. The inhibition activity was significantly correlated with sugar content, MC, and size of pectin. Kinetic studies revealed a competitive nature of pectin inhibition with the heparin, a crucial component of the FGF signal transduction process. The observation that the heparin-dependent biological activity of FGF signal transduction is antagonized by citrus pectin should be further investigated for the use of these pectins as anti-growth factor agents for potential health benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.