Several research studies have revealed that migraine has a solid link with gastrointestinal diseases especially irritable bowel syndrome (IBS). This study was carried out to investigate therapeutic potential of diet based on IgG elimination combined with probiotics on migraine plus irritable bowel syndrome. A total of 60 patients diagnosed with migraine plus IBS were recruited for the study. IgG antibodies against 266 food varieties were detected by ELISA. Then, the subjects were randomized into three groups for treatment of IgG elimination diet or probiotics or diet combined with probiotics. Migraine symptom, gut function score, medication use, and serum serotonin level were measured at baseline, 7 weeks, and 14 weeks. Improvement of migraine and gut symptom was achieved at a certain time point. Reduced use of over-the-counter- (OTC−) analgesics was seen in all groups. However, use of triptans did not show significant difference. An increased serum serotonin level was seen in subjects treated with elimination diet and elimination diet combined with probiotics. IgG elimination diet combined with probiotics may be beneficial to migraine plus IBS. It may provide new insight by understanding the intricate relationship between migraine and gastrointestinal diseases.
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models. Methods In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aβ deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice. Results In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aβ deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed. Conclusion Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress.
Introduction. Oxidative stress and cell apoptosis have both been suggested to be closely associated with the pathogenesis of Parkinson's disease (PD). Previously, bisdemethoxycurcumin (BDMC) has been shown to exhibit several desirable characteristics as a candidate neuroprotective agent, including antioxidant and anti-inflammatory activities in the nervous system. However, whether BDMC can exert cell-protective roles in an in vitro model of PD remains unknown. Material and methods. SH-SY5Y cells were pretreated with BDMC, with or without AG490 and SI-201, for 30 min, followed by a co-incubation with rotenone for 24 h. Subsequently, a cell viability assay and western blotting was performed, and SOD and GSH activities were analyzed. Results. The results revealed that the pretreatment with BDMC enhanced the cell survival, antioxidative stress capacity and the phosphorylation levels of JAK/STAT3 in SH-SY5Y cells treated with rotenone. However, following the incubation with AG490 and SI-201, inhibitors of the JAK/STAT3 signaling pathway, BDMC was unable to exert cell-protective roles in SH-SY5Y cells treated with rotenone. Conclusions. In conclusion, the results suggested that BDMC may exert a cell-protective role in SH-SY5Y cells in vitro via JAK2/STAT3 signaling, thus suggesting the possible application of BDMC for the treatment of neurodegenerative diseases related to JAK2/STAT3 signaling.
BackgroundAlzheimer’s disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated.MethodsIn this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aβ1–42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed.ResultsBDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aβ1–42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aβ1–42 were inhibited.ConclusionThese results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.