Over 900 volatile organic compounds (VOCs) have been detected in indoor air, where they cause acute and chronic health problems to building occupants. Potted-plants can signifi cantly reduce VOC levels in indoor air, the root-zone bacteria of the potting mix effecting most of the VOC biodegradation. In this study, a baseline community level physiological profi le (CLPP) was established for the potting mix bacteria of the indoor plant species, Spathiphyllum wallisii 'Petite', using Biolog EcoPlates, to provide information on the functional abilities of this community. Changes in the CLPP resulting from benzene exposure were then determined and following the identifi cation of the carbon sources associated with changes in the CLPP, biostimulant solutions were formulated and applied to fresh potted-plant specimens. Biostimulation of benzene removal was observed, with increases in removal rates of about 15%, providing proof-of-concept for the biostimulation of this process. The fi ndings further elucidate the mechanisms of bacterial activity associated with removal of indoor airborne benzene, and could be applied to increase VOC biodegradation rates, augmenting the uses of indoor plants in improving building environmental quality.
By-products from the meat and dairy industries are important sources of high biological value proteins. This paper explores possibilities for improving the swelling and integrity of a cross-linked whey and gelatin hydrogel with different amounts of CuSO4 × 5H2O. Overall, swelling tests demonstrate that cross-linked samples show a better hydration capacity and stability in the hydration medium, but different copper concentrations lead to different swelling behavior. At concentrations smaller than 0.39%, the sample lasts for 75 h in a water environment before beginning to disintegrate. At a concentration of copper sulphate higher than 0.55%, the stability of the sample increased substantially. The swelling kinetics has been investigated. The diffusion constant values increased with the increase in copper concentration, but, at the highest concentration of copper (0.86%), its value has decreased. Spectroscopy analyses such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-VIS), and nuclear magnetic resonance (NMR) relaxometry analyses revealed changes in the secondary and tertiary structure of proteins as a result of the interaction of Cu2+ ions with functional groups of protein chains. In addition to its cross-linking ability, CuSO4 × 5H2O has also shown excellent antibacterial properties over common bacterial strains responsible for food spoilage. The result of this research demonstrates the potential of this hydrogel system as a unique material for food packaging.
The heterogeneous effects due to filler interactions and chain dynamics of reinforcing nano‐filler particles were characterized on a series of filled EPDM elastomers using the Payne effect and low field NMR, 1H transverse (T2), longitudinal (T1) and longitudinal in rotating frame (T1ρ) relaxation time measurements. Measurement of the Payne effect and NMR relaxation curves were used to obtain the distribution of filler/filler interactions and chain dynamics by one‐dimensional Laplace inversion. Distributions of shear‐strain constants in the Payne effect reveal the existence of weak, medium and strong filler/filler interactions which were correlated to filler properties and content. The analysis of relaxation‐time distributions leads to the identification of multimodal polymer network dynamics.magnified image
Background: The effects of two lipidlowering drugs, simvastatin and fenofibrate on osteoporosis in the femurs of healthy and ovariectomized female rats were investigated quantitatively by histological images and
Whey-based hydrogel samples with increasing concentrations of graphene oxide (GO) were studied, against a control sample (M), for swelling behavior in light of nuclear magnetic resonance (NMR) and mathematical models of the diffusion process and for antibacterial activity. Graphene oxide (GO) is an optimal filler for whey-based hydrogels, giving them improved mechanical and swelling properties at low concentrations. Crosslinking induces a certain stiffness of the hydrogels, which is why only the first part of the swelling process (<60%) follows the first-order model, while during the whole time interval, the swelling process follows the second-order diffusion model. The NMR relaxometry results are consistent with the swelling behavior of GO-reinforced whey–gelatin composite hydrogels, showing that higher GO concentrations induce a higher degree of cross-linking and, therefore, lower swelling capacity. Only hydrogel samples with higher GO concentrations demonstrated antibacterial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.