Zinc telluride thin films with different thicknesses were grown onto glass substrates by the rf magnetron sputtering technique, using time as a variable growth parameter. All other deposition process parameters were kept constant. The deposited thin films with thickness from 75 to 460 nm were characterized using X-ray diffraction, electron microscopy, atomic force microscopy, ellipsometry, and UV-Vis spectroscopy, to evaluate their structures, surface morphology, topology, and optical properties. It was found out that the deposition time increase leads to a larger growth rate. This determines significant changes on the ZnTe thin film structures and their surface morphology. Characteristic surface metrology parameter values varied, and the surface texture evolved with the thickness increase. Optical bandgap energy values slightly decreased as the thickness increased, while the mean grains radius remained almost constant at ~9 nm, and the surface to volume ratio of the films decreased by two orders of magnitude. This study is the first (to our knowledge) that thoroughly considered the correlation of film thickness with ZnTe structuring and surface morphology characteristic parameters. It adds value to the existing knowledge regarding ZnTe thin film fabrication, for various applications in electronic and optoelectronic devices, including photovoltaics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.