Cryptographic co-processors are integral to the modern System-on-Chips. Flexibility in such designs serves dual purpose, i.e., it enables acceleration of different essential cryptographic primitives (Encryption/Authentication/Pseudo Random Number Generation (PRNG) ) and also results in design compaction via resource sharing. In this context, a novel resource-shared crypto-coprocessor, named AE$HA-3 is presented, which combines two National Institute of Standards and Technology (NIST) standardized algorithms, i.e., Advance Encryption Standard (AES) and Secure Hash Algorithm-3 (SHA-3). Due to algorithmic dissimilarities, so far no resource-shared implementation enabling AES key scheduling/ enc/dec and SHA-3 has been presented. AE$HA-3 exploits resource-sharing for area reduction, i.e., integration of Look-Up-Tables (I-Tables) for AES enc/dec; logical optimization of Six Input Equation (SixIE) for SHA-3; a Unified XOR Section to carry out both key whitening in AES and SHA-3 transformations. Furthermore, the AES key scheduling was performed using the same resource-shared hardware. The proposed AE$HA-3 on Xilinx Virtex FPGA family results in highest hardware efficiency in terms of Throughput per Slice (TPS), along with a 49.37% area consumption reduction, when compared against the smallest stand-alone implementations presented to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.