In this paper, an advanced thermal camera-based system for detection of objects on rail tracks is presented. Developed system is powered by advanced image processing algorithm, in order to achieve greater reliability and robustness, and tested on set of infrared images captured at night conditions. The goal of this system is to detect objects on rail tracks and next to them and estimate distances between camera stand and detected objects. For that purpose, different edge detection methods are tested, and finally Canny edge detector is selected for rail track detection and for determination of region of interest, further used for analysis in object detection process. In determined region of interest, region-based segmentation is used for object detection. For estimation of distances between camera stand and detected objects, homography based method is used. Validation of estimated distances is done, in respect to real measured distances from camera stand to objects (humans) involved in experiment. Distances are estimated with a maximum error of 2%. System can provide reliable object detection, as well as distance estimation, and for improved robustness and adaptability, artificial intelligence tools can be used.
Accurate models for heat load prediction are essential to the operation and planning of a utility company. Load prediction helps a heat utility to make important and advanced decisions in district heating systems. As a popular data driven method, artificial neural networks are often used for prediction. The main idea is to achieve quality prediction for a short period in order to reduce the consumption of heat energy production and increased coefficient of exploitation of equipment. To improve the short term prediction accuracy, this paper presents a kind of improved artificial neural network model for 1 to 7 days ahead prediction of heat consumption of energy produced in small district heating system. Historical data set of one small district heating system from city of Nis, Serbia, was used. Particle swarm optimization is applied to adjust artificial neural network weights and threshold values. In this paper, application of feed forward artificial neural network for short-term prediction for period of 1, 3, and 7 days, of small district heating system, is presented. Two test data sets were considered with different interruption non-stationary performances. Comparison of prediction accuracy between regular and improved artificial neural network model was done. The comparison results reveal that improved artificial neural network model have better accuracy than that of artificial neural network ones.
In this paper, a fuzzy controller is proposed for wind turbine control. A model is analyzed and combined with a stochastic wind model for simulation purposes. Based on the model, a fuzzy control of wind turbine is developed. Wind turbine control loop provides the reference inputs for the electric generator control loop in order to make the system run with maximum power. Since the wind speed involved in the aerodynamic equations is a stochastic variable, whose effective value cannot be measured directly, a wind speed estimator is also proposed.[Projekat Ministarstva nauke Republike Srbije, br. TR33036/2011: Development of new meteorological mast for turbulence parameters characterization and br. TR35005/2011: Research and development of new generation wind turbines of high-energy efficiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.