A formulation for maximum-likelihood (ML) blur identification based on parametric modeling of the blur in the continuous spatial coordinates is proposed. Unlike previous ML blur identification methods based on discrete spatial domain blur models, this formulation makes it possible to find the ML estimate of the extent, as well as other parameters, of arbitrary point spread functions that admit a closed-form parametric description in the continuous coordinates. Experimental results are presented for the cases of 1-D uniform motion blur, 2-D out-of-focus blur, and 2-D truncated Gaussian blur at different signal-to-noise ratios.
In this paper, an advanced thermal camera-based system for detection of objects on rail tracks is presented. Developed system is powered by advanced image processing algorithm, in order to achieve greater reliability and robustness, and tested on set of infrared images captured at night conditions. The goal of this system is to detect objects on rail tracks and next to them and estimate distances between camera stand and detected objects. For that purpose, different edge detection methods are tested, and finally Canny edge detector is selected for rail track detection and for determination of region of interest, further used for analysis in object detection process. In determined region of interest, region-based segmentation is used for object detection. For estimation of distances between camera stand and detected objects, homography based method is used. Validation of estimated distances is done, in respect to real measured distances from camera stand to objects (humans) involved in experiment. Distances are estimated with a maximum error of 2%. System can provide reliable object detection, as well as distance estimation, and for improved robustness and adaptability, artificial intelligence tools can be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.