Traditionally, railway inspection and monitoring are considered a crucial aspect of the system and are done by human inspectors. Rapid progress of the machine vision-based systems enables automated and autonomous rail track detection and railway infrastructure monitoring and inspection with flexibility and ease of use. In recent years, several prototypes of vision based inspection system have been proposed, where most have various vision sensors mounted on locomotives or wagons. This paper explores the usage of the UAVs (drones) in railways and computer vision based monitoring of railway infrastructure. Employing drones for such monitoring systems enables more robust and reliable visual inspection while providing a cost effective and accurate means for monitoring of the tracks. By means of a camera placed on a drone the images of the rail tracks and the railway infrastructure are taken. On these images, the edge and feature extraction methods are applied to determine the rails. The preliminary obtained results are promising.
In this paper, an advanced thermal camera-based system for detection of objects on rail tracks is presented. Developed system is powered by advanced image processing algorithm, in order to achieve greater reliability and robustness, and tested on set of infrared images captured at night conditions. The goal of this system is to detect objects on rail tracks and next to them and estimate distances between camera stand and detected objects. For that purpose, different edge detection methods are tested, and finally Canny edge detector is selected for rail track detection and for determination of region of interest, further used for analysis in object detection process. In determined region of interest, region-based segmentation is used for object detection. For estimation of distances between camera stand and detected objects, homography based method is used. Validation of estimated distances is done, in respect to real measured distances from camera stand to objects (humans) involved in experiment. Distances are estimated with a maximum error of 2%. System can provide reliable object detection, as well as distance estimation, and for improved robustness and adaptability, artificial intelligence tools can be used.
One of the most important parameters in an edge detection process is setting up the proper threshold value. However, that parameter can be different for almost each image, especially for infrared (IR) images. Traditional edge detectors cannot set it adaptively, so they are not very robust. This paper presents optimization of the edge detection parameter, i.e. threshold values for the Canny edge detector, based on the genetic algorithm for rail track detection with respect to minimal value of detection error. First, determination of the optimal high threshold value is performed, and the low threshold value is calculated based on the well-known method. However, detection results were not satisfactory so that, further on, the determination of optimal low and high threshold values is done. Efficiency of the developed method is tested on set of IR images, captured under night-time conditions. The results showed that quality detection is better and the detection error is smaller in the case of determination of both threshold values of the Canny edge detector.
Accurate models for heat load prediction are essential to the operation and planning of a utility company. Load prediction helps a heat utility to make important and advanced decisions in district heating systems. As a popular data driven method, artificial neural networks are often used for prediction. The main idea is to achieve quality prediction for a short period in order to reduce the consumption of heat energy production and increased coefficient of exploitation of equipment. To improve the short term prediction accuracy, this paper presents a kind of improved artificial neural network model for 1 to 7 days ahead prediction of heat consumption of energy produced in small district heating system. Historical data set of one small district heating system from city of Nis, Serbia, was used. Particle swarm optimization is applied to adjust artificial neural network weights and threshold values. In this paper, application of feed forward artificial neural network for short-term prediction for period of 1, 3, and 7 days, of small district heating system, is presented. Two test data sets were considered with different interruption non-stationary performances. Comparison of prediction accuracy between regular and improved artificial neural network model was done. The comparison results reveal that improved artificial neural network model have better accuracy than that of artificial neural network ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.