The hybrid two-dimensional (2D) halide perovskites have recently drawn significant interest because they can serve as excellent photoabsorbers in perovskite solar cells. Here we present the large scale synthesis, crystal structure, and optical characterization of the 2D (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n−1 Pb n I 3n+1 (n = 1, 2, 3, 4, ∞) perovskites, a family of layered compounds with tunable semiconductor characteristics. These materials consist of well-defined inorganic perovskite layers intercalated with bulky butylammonium cations that act as spacers between these fragments, adopting the crystal structure of the Ruddlesden−Popper type. We find that the perovskite thickness (n) can be synthetically controlled by adjusting the ratio between the spacer cation and the small organic cation, thus allowing the isolation of compounds in pure form and large scale. The orthorhombic crystal structures of (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 )-Pb 2 I 7 (n = 2, Cc2m; a = 8.9470(4), b = 39.347(2) Å, c = 8.8589(6)), (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) 2 Pb 3 I 10 (n = 3, C2cb; a = 8.9275( 6), b = 51.959(4) Å, c = 8.8777(6)), and (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) 3 Pb 4 I 13 (n = 4, Cc2m; a = 8.9274(4), b = 64.383(4) Å, c = 8.8816(4)) have been solved by single-crystal X-ray diffraction and are reported here for the first time. The compounds are noncentrosymmetric, as supported by measurements of the nonlinear optical properties of the compounds and density functional theory (DFT) calculations. The band gaps of the series change progressively between 2.43 eV for the n = 1 member to 1.50 eV for the n = ∞ adopting intermediate values of 2.17 eV (n = 2), 2.03 eV (n = 3), and 1.91 eV (n = 4) for those between the two compositional extrema. DFT calculations confirm this experimental trend and predict a direct band gap for all the members of the Ruddlesden− Popper series. The estimated effective masses have values of m h = 0.14 m 0 and m e = 0.08 m 0 for holes and electrons, respectively, and are found to be nearly composition independent. The band gaps of higher n members indicate that these compounds can be used as efficient light absorbers in solar cells, which offer better solution processability and good environmental stability. The compounds exhibit intense room-temperature photoluminescence with emission wavelengths consistent with their energy gaps, 2.35 eV (n = 1), 2.12 eV (n = 2), 2.01 eV (n = 3), and 1.90 eV (n = 4) and point to their potential use in light-emitting diodes. In addition, owing to the low dimensionality and the difference in dielectric properties between the organic spacers and the inorganic perovskite layers, these compounds are naturally occurring multiple quantum well structures, which give rise to stable excitons at room temperature.
We report on the fabrication and properties of the semiconducting 2D (CH3(CH2)3NH3)2(CH3NH3)(n-1)Pb(n)I(3n+1) (n = 1, 2, 3, and 4) perovskite thin films. The band gaps of the series decrease with increasing n values, from 2.24 eV (CH3(CH2)3NH3)2PbI4 (n = 1) to 1.52 eV CH3NH3PbI3 (n = ∞). The compounds exhibit strong light absorption in the visible region, accompanied by strong photoluminescence at room temperature, rendering them promising light absorbers for photovoltaic applications. Moreover, we find that thin films of the semi-2D perovskites display an ultrahigh surface coverage as a result of the unusual film self-assembly that orients the [Pb(n)I(3n+1)](-) layers perpendicular to the substrates. We have successfully implemented this 2D perovskite family in solid-state solar cells, and obtained an initial power conversion efficiency of 4.02%, featuring an open-circuit voltage (V(oc)) of 929 mV and a short-circuit current density (J(sc)) of 9.42 mA/cm(2) from the n = 3 compound. This result is even more encouraging considering that the device retains its performance after long exposure to a high-humidity environment. Overall, the homologous 2D halide perovskites define a promising class of stable and efficient light-absorbing materials for solid-state photovoltaics and other applications.
Tin-based halide perovskite materials have been successfully employed in lead-free perovskite solar cells, but the tendency of these materials to form leakage pathways from p-type defect states, mainly Sn and Sn vacancies, causes poor device reproducibility and limits the overall power conversion efficiencies (PCEs). Here, we present an effective process that involves a reducing vapor atmosphere during the preparation of Sn-based halide perovskite solar cells to solve this problem, using MASnI, CsSnI, and CsSnBr as the representative absorbers. This process enables the fabrication of remarkably improved solar cells with PCEs of 3.89%, 1.83%, and 3.04% for MASnI, CsSnI, and CsSnBr, respectively. The reducing vapor atmosphere process results in more than 20% reduction of Sn/Sn ratios, which leads to greatly suppressed carrier recombination, to a level comparable to their lead-based counterparts. These results mark an important step toward a deeper understanding of the intrinsic Sn-based halide perovskite materials, paving the way to the realization of low-cost and lead-free Sn-based halide perovskite solar cells.
Here, we present the fifth member (n = 5) of the Ruddlesden-Popper (CH 3 (CH 2) 3 NH 3) 2 (CH 3 NH 3) nÀ1 Pb n I 3n+1 family, which we successfully synthesized in high yield and purity. Phase purity could be clearly determined from its X-ray powder diffraction patterns, which feature the (0k0) Bragg reflections at low 2q angles. The obtained pure n = 5 compound was confirmed to be a direct bandgap semiconductor with E g = 1.83 eV. The direct nature of the band gap is supported by density functional theory calculations. Intense photoluminescence was observed at room temperature at 678 nm arising from the band edge of the material. High-quality thin films can be prepared by the hot-casting method from solutions with a pure-phase compound as a precursor. The planar solar cells fabricated with n = 5 thin films demonstrate excellent power-conversion efficiency of 8.71% with an impressive open-circuit voltage of $1 V. Our results point to the use of layered perovskites with higher n numbers and pure chemical composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.