Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability.
Recent studies have shown that ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) inactivates endogenous dentin proteases, thereby preventing collagen degradation and improving the durability of adhesive bonds to dentin. Bond durability is routinely assessed by monotonic microtensile testing, which does not consider the cyclic nature of mastication. Objective to characterize the effect of an EDC pretreatment on the fatigue crack growth behavior of resin-dentin bonds. Methods Bonded interface Compact Tension (CT) specimens were prepared using a three-step etch-and-rinse adhesive and hybrid resin-composite. Adhesive bonding of the treated groups included a 1 min application of an experimental EDC conditioner to the acid-etched dentin. The control groups did not receive EDC treatment. The fatigue crack growth resistance was examined after storage in artificial saliva for 0, 3 and 6 months. Results There was no significant difference in the immediate fatigue crack growth resistance of the EDC-treated and control groups at 0 months. However, after the 3 and 6 months storage periods the EDC-treated groups exhibited significantly greater (p≤0.05) fatigue crack growth resistance than the control specimens. Significance Although the EDC treatment maintained the fatigue crack growth resistance of the dentin bonds through 6 months of storage, additional studies are needed to assess its effectiveness over longer periods and in relation to other cross-linking agents.
The application of a cross-linker to demineralized dentin is reportedly effective at extending the durability of dentin bonds. Yet, results for the fatigue crack growth resistance have been limited to only a three-step etch-and-rinse adhesive. Objective To compare the effect of a cross- linker pretreatment on the durability of resin-dentin bonds prepared with a two- vs three-step adhesive system, in terms of the fatigue crack growth resistance. Methods Bonded interface Compact Tension (CT) specimens were prepared using commercial two- and three-step etch-and-rinse adhesives and compatible hybrid resin-composite. For the treated groups, adhesive bonding was preceded by a 1 min application of an experimental carbodiimide (EDC) conditioner to the acid-etched dentin. The control groups received no such treatment. The fatigue crack growth resistance was examined after storage in phosphate-buffered artificial saliva 37° C for 0, 3 and 6 months. Results There was no significant difference in the immediate fatigue crack growth resistance of the control or EDC-treated groups at 0 months for either adhesive system. After 3 and 6 months of storage, the EDC-treated groups exhibited significantly greater (p≤0.05) fatigue crack growth resistance than the controls. Although the EDC treatment was equally effective in deterring degradation for both adhesives, bonds prepared with the three-step system exhibited the lowest resistance to fatigue crack growth overall. Significance An EDC treatment applied during dentin bonding could help maintain the durability of bonds prepared with two or three-step adhesive bonding systems.
The importance of the Dentin Enamel Junction (DEJ) to the durability of adhesive bonds to tooth structure is unclear. In fact, no investigation has been reported on contributions of the DEJ to the fatigue resistance of the bonded interface. In this study, the durability of adhesive bonds to tooth structure involving the DEJ was quantified and compared to that of adhesive bonds to enamel only, not including the DEJ. Two different configurations of enamel bonding were considered, including when tensile stress is focused on the outer enamel (occlusal configuration) or the inner decussated enamel (decussated configuration). The resistance to failure for all bonded interfaces was assessed under both static and cyclic loading to failure. Results showed that the durability of the bonded interfaces was primarily a function of their resistance to crack initiation and growth. The bonded interface strength involving the DEJ was significantly (p ≤ 0.05) greater than that of bonds to enamel only with occlusal configuration, under both static and cyclic loading. While the fatigue strength of bonds involving the DEJ was approximately 20% greater than that for enamel bonds with occlusal configuration (7.7MPa) it was lower than that of enamel with the decussated configuration. The DEJ deterred cracks from extending readily into the dentin but it did not prevent fatigue failure. These results suggest that the durability of bonds to enamel are most dependent on the enamel rod decussation and that the DEJ plays a minor role.
Ground impact injuries are a significant mode of sports-related injuries and a particular concern for concussions caused by head-to-ground impacts. To study these injuries and develop improved technologies to reduce their likelihood and severity, a test surface must be available that replicates the dynamic mechanical response of typical playing field surfaces. In this study, a series of playing surface simulants created from stacked layers of foams and rubbers of various thicknesses and hardness values were tested under impact loading. Data are generated via ASTM F355/F1936 with a Type A cylindrical missile, implemented using a modified rail-guided test system. The results show that multi-layer stacks graded to transition from a soft impact face to a harder base layer, when subject to uniaxial impulse, produce acceleration pulse shapes, peak values, and durations comparable to a wide range of real playing surfaces. The low cost, repeatability, and facile assembly and maintenance of the playing surface simulants make them well-suited for laboratory study of ground impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.