Future Army pulsed power applications semiconductor devices that will meet requirements for highpower, low weight and volume, and fast switching speed. The following paper presents the pulsed power evaluation of high voltage silicon carbide (SiC) super gate turn-off (SGTO) thyristors. These devices are well suited for high voltage, high temperature pulsed power and continuous power electronic systems. A pulse-forming network (PFN) circuit and a low inductance, series resistor-capacitor (LRC) circuit were developed to evaluate both the fast dI/dt capability and the pulse safe operating area (SOA) of the SiC SGTO. Transient simulations of the high voltage SiC SGTOs were also performed on a narrow pulse LRC circuit to investigate the device's switching behavior under extreme pulsed conditions.
Of all of the material parameters associated with a semiconductor, the carrier lifetime is by far the most complex and dynamic, being a function of the dominant recombination mechanism, the equilibrium number of carriers, the perturbations in carriers (e.g., carrier injection), and the temperature, to name the most prominent variables. The carrier lifetime is one of the most important parameters in bipolar devices, greatly affecting conductivity modulation, on-state voltage, and reverse recovery. Carrier lifetime is also a useful metric for device fabrication process control and material quality. As it is such a dynamic quantity, carrier lifetime cannot be quoted in a general range such as mobility; it must be measured. The following describes a stand-alone, wide-injection range open circuit voltage decay system with unique lifetime extraction algorithms. The system is initially used along with various lifetime spectroscopy techniques to extract fundamental recombination parameters from a commercial high-voltage PIN diode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.