T-cell activation induces expression of the hematopoietic growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). To define the molecular events involved in the induction of GM-CSF gene expression more clearly, we prepared and analyzed deletion mutants of GM-CSF promoter recombinant constructs. The results localized inducible expression to a 90-base-pair region (-53 to +37) which is active in uninfected and human T-cell leukemia virus-infected T-cell lines but not in resting or mitogen-stimulated B cells. DNase I footprinting experiments revealed protection of sequences contained within this region, including a repeated nucleotide sequence, CATT(A/T), which could serve as a core recognition sequence for a cellular transcription factor. Upstream of these GM-CSF promoter sequences is a 15-base-pair region (-193 to -179) which has negative regulatory activity in human T-cell leukemia virus-infected T cells. These studies revealed a complex pattern of regulation of GM-CSF expression in T cells; positive and negative regulatory sequences may play critical roles in controlling the expression of this potent granulopoietin in the bone marrow microenvironment and in localized inflammatory responses.
The anteroposterior character of mesoderm induced by a peptide growth factor (XTC-MIF) was tested by transplantation into host Xenopus gastrulae. Both retinoic acid and a homeodomain protein were able to override the anteriorizing effect of the growth factor. Microinjection of a posteriorly expressed homeobox mRNA can respecify anteroposterior identity, transforming head mesoderm into tail-inducing mesoderm. Unexpectedly, overexpression of XIHbox 6 protein in the transplanted cells, without addition of growth factors, caused the formation of tail-like structures. The cells overexpressing XIHbox 6 were able to recruit cells from the host into the secondary axis. The results suggest that vertebrate homeodomain proteins are part of the biochemical pathway leading to the generation of the body axis.
We review here old experiments that defined the existence of morphogenetic gradient fields in vertebrate embryos. The rather abstract idea of cell fields of organ-forming potential has become less popular among modern developmental and molecular biologists. Results obtained with antibodies directed against homeodomain proteins suggest that gradient fields may indeed be visualized at the level of individual regulatory molecules in vertebrate embryos.
XIHbox 6 is an early spatially restricted marker for molecular studies of neural induction. The sequence of the full-length XIHbox 6 protein is reported. An antibody raised against a beta-galactosidase/XIHbox 6 fusion protein was used to analyze the expression of XIHbox 6 proteins during frog embryogenesis. The anterior border of XIHbox 6 expression lies just posterior of the hindbrain/spinal cord junction. Immunostaining extends the entire length of the spinal cord. A much weaker transient expression with a similar anterior border is observed in mesoderm. Almost all nuclei in the newly closed spinal cord contain XIHbox 6. The number of positive nuclei decreases over the next stages of development, until in later embryos XIHbox 6 is restricted to nuclei of the dividing neuroepithelium, and not the mantle or marginal zones of the spinal cord. When the limb buds begin to grow, there is a second burst of XIHbox 6 expression in proliferating neurons of the cervical and lumbar enlargements, where nerves arise that supply the limbs. The data suggest that XIHbox 6 expression is spatially and temporally restricted to immature neurons of the spinal cord, before their differentiation into mature neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.