Wild large herbivores are declining worldwide. Despite extensive use of exclosure experiments to investigate herbivore impacts, there is little consensus on the effects of wild large herbivores on ecosystem function. Of the ecosystem functions likely impacted, we reviewed the five most‐studied in exclosure experiments: ecosystem resilience/resistance to disturbance, nutrient cycling, carbon cycling, plant regeneration, and primary productivity. Experimental data on large wild herbivores' effects on ecosystem functions were predominately derived from temperate grasslands (50% grasslands, 75% temperate zones). Additionally, data were from experiments that may not be of adequate size (median size 400 m2 despite excluding all experiments below 25 m2) or duration (median duration 6 years) to capture ecosystem‐scale responses to these low‐density and wide‐ranging taxa. Wild herbivore removal frequently impacted ecosystem functions; for example, net carbon uptake increased by three times in some instances. However, the magnitude and direction of effects, even within a single function, were highly variable. A focus on carbon cycling highlighted challenges in interpreting effects on a single function. While the effect of large herbivore exclusion on carbon cycling was slightly positive when its components (e.g. pools vs. fluxes of carbon) were aggregated, effects on individual components were variable and sometimes opposed. Given modern declines in large wild herbivores, it is critical to understand their effects on ecosystem function. However, this synthesis highlights strong variability in direction, magnitude, and modifiers of these effects. Some variation is likely due to disparity in what components are used to describe a given function. For example, for the carbon cycle we identified eight distinctly meaningful components, which are not easily combined yet are potentially misrepresentative of the larger cycle when considered alone. However, much of the observed difference in responses likely reflects real ecological variability across complex systems. To move towards a general predictive framework we must identify where variation in effect is due to methodological differences and where due to ecosystem context. Two critical steps forward are (a) additional quantitative synthetic analyses of large herbivores' effects on individual functions, and (b) improved, increased systematic exclosure research focusing on effects of large herbivores' exclusion on functions. A free Plain Language Summary can be found within the Supporting Information of this article.
Predator–prey interactions shape ecosystems and can help maintain biodiversity. However, for many of the earth's most biodiverse and abundant organisms, including terrestrial arthropods, these interactions are difficult or impossible to observe directly with traditional approaches. Based on previous theory, it is likely that predator–prey interactions for these organisms are shaped by a combination of predator traits, including body size and species‐specific hunting strategies. In this study, we combined diet DNA metabarcoding data of 173 individual invertebrate predators from nine species (a total of 305 individual predator–prey interactions) with an extensive community body size data set of a well‐described invertebrate community to explore how predator traits and identity shape interactions. We found that (1) mean size of prey families in the field usually scaled with predator size, with species‐specific variation to a general size‐scaling relationship (exceptions likely indicating scavenging or feeding on smaller life stages). We also found that (2) although predator hunting traits, including web and venom use, are thought to shape predator–prey interaction outcomes, predator identity more strongly influenced our indirect measure of the relative size of predators and prey (predator:prey size ratios) than either of these hunting traits. Our findings indicate that predator body size and species identity are important in shaping trophic interactions in invertebrate food webs and could help predict how anthropogenic biodiversity change will influence terrestrial invertebrates, the earth's most diverse animal taxonomic group.
The Asian tiger mosquito, Aedes albopictus, appears to have been extirpated from Palmyra Atoll following rat eradication. Anecdotal biting reports, collection records, and regular captures in black-light traps showed the species was present before rat eradication. Since then, there have been no biting reports and no captures over 2 years of extensive trapping (black-light and scent traps). By contrast, the southern house mosquito, Culex quinquefasciatus, was abundant before and after rat eradication. We hypothesize that mammals were a substantial and preferred blood meal for Aedes, whereas Culex feeds mostly on seabirds. Therefore, after rat eradication, humans and seabirds alone could not support positive population growth or maintenance of Aedes. This seems to be the first documented accidental secondary extinction of a mosquito. Furthermore, it suggests that preferred host abundance can limit mosquito populations, opening new directions for controlling important disease vectors that depend on introduced species like rats.
Predator–prey interactions shape ecosystem stability and are influenced by changes in ecosystem productivity. However, because multiple biotic and abiotic drivers shape the trophic responses of predators to productivity, we often observe patterns, but not mechanisms, by which productivity drives food web structure. One way to capture mechanisms shaping trophic responses is to quantify trophic interactions among multiple trophic groups and by using complementary metrics of trophic ecology. In this study, we combine two diet-tracing methods: diet DNA and stable isotopes, for two trophic groups (top predators and intermediate predators) in both low- and high-productivity habitats to elucidate where in the food chain trophic structure shifts in response to changes in underlying ecosystem productivity. We demonstrate that while top predators show increases in isotopic trophic position ( δ 15 N) with productivity, neither their isotopic niche size nor their DNA diet composition changes. Conversely, intermediate predators show clear turnover in DNA diet composition towards a more predatory prey base in high-productivity habitats. Taking this multi-trophic approach highlights how predator identity shapes responses in predator–prey interactions across environments with different underlying productivity, building predictive power for understanding the outcomes of ongoing anthropogenic change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.