I Unique among the phospholipids, phosphatidylserine depresses brain energy metabolism when injected intravenously into mice in the form of sonicated liposomes. The possibility that this effect results from a metabolic transformation of phosphatidylserine is examined in this paper. 2 A strong enhancement of the phosphatidylserine effect is induced by the incubation of liposomes with rat serum. Similar phosphatidylserine activation is observed after the incubation of the phospholipid with purified phospholipase A2 from pancreas. In both cases phosphatidylserine is split into the deacylated derivative, lysophosphatidylserine. 3 Lysophosphatidylserine reproduces with greater efficacy the effect of phosphatidylserine on brain energy metabolism. Other lysophospholipids are not effective. 4 It is concluded that the pharmacological effects of phosphatidylserine liposomes is due to the generation of lysophosphatidylserine.
IntroductionMethods
The cDNA for human ciliary neuronotrophic factor (CNTF) has been cloned into an expression vector under the control of the T7 promoter. The BL21 strain of E. coli was transformed with this vector. Human CNTF accounted for about 30% of the total bacterial protein after induction with isopropyl-B-D-thiogalactopyranoside. This human CNTF was purified to homogeneity from inclusion bodies by a combination of ion exchange chromatography and reverse-phase high performance liquid chromatography. The amino-terminal amino acid sequence of the purified protein was identical to the deduced amino acid sequence; however, the methionyl residue has been removed. On SDS-PAGE gels, human CNTF displayed a molecular weight of about 24 kDa, in accord with its deduced molecular mass; a pI of 5.8 indicates the acidic nature of the molecule. A proposed structure for human CNTF includes major alpha helical regions. The ED50 of purified human CNTF was approximately 30 pM, using cultured embryonic day 10 chicken dorsal root ganglion neurons; no activity was observed with neurons from embryonic day 8 ganglia. Polyclonal antibodies prepared against both a synthetic peptide of CNTF and the entire human CNTF protein recognized a single 24 kDa band on Western blots, corresponding to human CNTF. However, only the antibodies against intact CNTF blocked its biological activity. This represents the first molecular expression and purification of human CNTF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.