Injuries are the cause of significant morbidity among rugby players in Argentina. A more thorough investigation and a greater understanding of the mechanisms are crucial in order to update the rugby laws and reduce this high injury incidence.
Human red cell acid phosphatase (ACP1) is a polymorphic enzyme closely related to cytosolic low molecular weight acid phosphatases, a protein family broadly conserved among eukaryotes. Two different functions have been proposed for ACP1: flavin mononucleotide (FMN) phosphatase and phosphotyrosine phosphatase (PTPase). Given that genetic variants of ACP1 activity are common, the enzyme could have a role in regulating a large spectrum of cellular functions and, in turn, disease susceptibility. In the present paper we report a study of ACP1 genetic polymorphism in 1088 normal subjects and in 1267 subjects from the population of Rome admitted to hospital for a number of common diseases. All ACP1 parameters investigated show highly significant differences among samples, suggesting that the enzyme may have a significant role in some of the diseases considered. In particular, consistent associations of ACP1 with developmental disturbances and with hemolytic favism have been observed. In the majority of diseases showing association with ACP1, only one of the two ACP1 isoforms, f and s, is involved, supporting the hypothesis of a functional differentiation between the two enzymatic fractions.
The present study reports an analysis of genetic differentiation among 14 Sardinian villages located mainly in the center of the island. Chi-square tests show significant genetic heterogeneity among villages, and analyses by F- and R- statistics indicate an essentially random pattern of differentiation for all alleles. Using the kinship methods of Morton, a matrix, R, with elements rij describing the correlations between the gene frequencies of villages i and j is obtained. Use of Malécot's formula relating the rij to the geographic distances between villages shows a rapid decline of kinship with increasing distance but reveals essentially no relationship for distances over 40 km. Rotation of a two-dimensional reduction of the kinship matrix to maximum congruence with the geographic distances indicates that about 25% of the genetic distances can be accounted for by the geographic location of the villages. Isolation due in part to cultural factors, genetic drift, and special local or regional patterns of villages associations appear to be involved in the pattern of genetic variation.
Low molecular weight acid phosphatase encoded by the highly polymorphic locus ACP1 is a member of the protein-tyrosin phosphatase family (PTPases) which plays an essential role in the control of receptor signalling through phosphotyrosine pathways. Recent experiments have shown that purified rat liver ACP, corresponding to human ACP1, is able to hydrolyze a phosphotyrosine-containing synthetic peptide corresponding to the 1146-1158 sequence of the human insulin receptor, and shows a high affinity for it. This prompted us to analyze the degree of glycemic control in relation to ACP1 genetic variability in a sample of 214 diabetic pregnant women including IDDM, NIDDM and gestational diabetes. The ACP1 genotype was also determined in 482 non-diabetic pregnant women. In diabetic women glycemic levels in the last trimester of pregnancy appear to be significantly associated with the ACP1 genotype, and correlate positively with ACP1 enzymatic activity. The data suggest that quantitative variations of ACP1 may influence the clinical manifestations of diabetic disorders, and call for further studies on the role of this enzyme in the modulation of insulin-receptor phosphotyrosine pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.