Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log 10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phagesensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.
A longitudinal study of bacteriophages and their hosts was carried out at a broiler house that had been identified as having a population of Campylobacter-specific bacteriophages. Cloacal and excreta samples were collected from three successive broiler flocks reared in the same barn. Campylobacter jejuni was isolated from each flock, whereas bacteriophages could be isolated from flocks 1 and 2 but were not isolated from flock 3. The bacteriophages isolated from flocks 1 and 2 were closely related to each other in terms of host range, morphology, genome size, and genetic content. All Campylobacter isolates from flock 1 were genotypically indistinguishable by pulsed-field gel electrophoresis (PFGE). PFGE and multilocus sequence typing indicated that this C. jejuni type was maintained from flock 1 to flock 2 but was largely superseded by three genetically distinct C. jejuni types insensitive to the resident bacteriophages. All isolates from the third batch of birds were insensitive to bacteriophages and genotypically distinct. These results are significant because this is the first study of an environmental population of C. jejuni bacteriophages and their influence on the Campylobacter populations of broiler house chickens. The role of developing bacteriophage resistance was investigated as this is a possible obstacle to the use of bacteriophage therapy to reduce the numbers of campylobacters in chickens. In this broiler house succession was largely due to incursion of new genotypes rather than to de novo development of resistance.
Campylobacter jejuni and Campylobacter-specific bacteriophage were enumerated from broiler chicken ceca selected from 90 United Kingdom flocks (n = 205). C. jejuni counts in the presence of bacteriophage (mean log10 5.1 CFU/g) were associated with a significant (P < 0.001) reduction compared to samples with Campylobacter alone (mean log10 6.9 CFU/g)
BackgroundCampylobacter jejuni, the commonest cause of bacterial diarrhoea worldwide, can also induce colonic inflammation. To understand how a previously identified heat stable component contributes to pro-inflammatory responses we used microarray and real-time quantitative PCR to investigate the transcriptional response to a boiled cell extract of Campylobacter jejuni NCTC 11168.ResultsRNA was extracted from the human colonocyte line HCA-7 (clone 29) after incubation for 6 hours with Campylobacter jejuni boiled cell extract and was used to probe the Affymetrix Human Genome U133A array. Genes differentially affected by Campylobacter jejuni boiled cell extract were identified using the Significance Score algorithm of the Bioconductor software suite and further analyzed using the Ingenuity Pathway Analysis program. The chemokines CCL20, CXCL3, CXCL2, Interleukin 8, CXCL1 and CXCL6 comprised 6 of the 10 most highly up-regulated genes, all with Significance Scores ≥ 10. Members of the Tumor Necrosis Factor α/Nuclear Factor-κB super-family were also significantly up-regulated and involved in the most significantly regulated signalling pathways (Death receptor, Interleukin 6, Interleukin 10, Toll like receptor, Peroxisome Proliferator Activated Receptor-γ and apoptosis). Ingenuity Pathway Analysis also identified the most affected functional gene networks such as cell movement, gene expression and cell death. In contrast, down-regulated genes were predominantly concerned with structural and metabolic functions.ConclusionA boiled cell extract of Campylobacter jejuni has components that can directly switch the phenotype of colonic epithelial cells from one of resting metabolism to a pro-inflammatory one, particularly characterized by increased expression of genes for leukocyte chemoattractant molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.