In Mischungen von Tetrachlorkohlenstoff und Zyklohexan wird eine Kettenreaktion durch γ‐Strahlung ausgelöst, in deren Verlauf Chloroform und Zyklohexylchlorid gebildet werden. Die Kettenlänge ist umgekehrt proportional der Wurzel aus der absorbierten Dosisleistung. Die gefundene Bruttoaktivierungsenergie von 9,6 kcal/Mol wird als die Aktivierungsenergie des langsamsten Wachstumsschrittes der Kette, nämlich der Reaktion CCl3 + C6H12 → CCl3H + C6H11, gedeutet. Die Kettenreaktion wird durch freie CCl3‐ und C6H11‐Radikale aus der Radiolyse der Ausgangsstoffe gestartet. Je zwei Ketten wird eine Molekel HCl gebildet. Jod inhibiert die Kettenreaktion. Tetrachlorkohlenstoff erniedrigt bereits in geringer Konzentration die Ausbeute des Wasserstoffs, Zyklohexens und Dizyklohexyls aus Zyklohexan. Wird Zyklohexan in verdünnter CCl4‐Lösung bestrahlt, entsteht Wasserstoff nur nach einem monomolekularen Reaktionsmechanismus. Die quantitative Untersuchung dieser Effekte führte zu folgenden Ergebnissen: Ausbeute des über freie Atome gebildeten Wasserstoffs: 3,0 Molekeln/100eV; monomolekulare Wasserstoffausbeute: 0,35; bimolekulare Wasserstoffaubeute: 2,0; molekulare Ausbeuten des Dizyklohexyls und Zyklohexens 0,25 bzw. 0,7; Verhältnis der Geschwindigkeitskonstanten des Cl‐Entzugs aus CCl4 und des H‐Entzugs aus C6H12 durch freie Wasserstoffatome: 140:1. Der Kettenabbruch geschieht durch Reaktionen zwischen den CCl3‐ und C6H11‐Radikalen. Aus den relativen Häufigkeiten der resultierenden Produkte (Zyklohexen + Dizyklohexyl, Trichlormethylzyklohexan, Hexachloräthan) ließ sich ableiten, daß die stationäre Konzentration der C6H11‐Radikale fünfmal geringer ist als die der CCl3‐Radikale. Dieser Befund macht eine Reihe von Eigenschaften der Kettenreaktion verständlich. Das bisher noch nicht beschriebene Trichlormethylzyklohexan wurde strahlenchemisch synthetisiert.
p-Nitroperoxybenzoic acid is reduced by carboxyl radical anions which arise from the interaction of -OH with formic acid or formate ions at pH >3. The resulting electron adduct of p-nitroperoxybenzoic acid (I) eliminates an -OH radical which subsequently propagates a chain reaction. The inverse square-root law for the dose rate has been confirmed for the chain process. G values >200 were observed for the decomposition of the peroxy acid. An activation energy of 2.7 kcal mol-1 has been attributed to the elimination of -OH from radical anion I. 2-Hydroxyl-2-propyl radicals, formed through hydrogen abstraction from 2-propanol by •OH, also sustain a chain reaction in solutions of p-nitroperoxybenzoic acid, but the kinetic chain length is considerably reduced in comparison with reactions of carboxyl radical anions.
Several fluorine‐containing ethanes (monofluoro, 1,1‐difluoro, 1,1,1‐trifluoro, 1,1,2‐trifluoro, 1,1,2,2‐tetrafluoro, and pentafluoro) and ethenes (1,1‐difluoro and trifluoro) form hydrogen fluoride when irradiated with gamma rays in the gas phase at 25°C. Hydrogen fluoride is apparently formed from fluoroethanes by a mechanism which involves formation of an intermediate semiion pair. We observed identical HF yields both in the absence and presence of molecular oxygen, except for monofluoroethane. A reduction of G(HF) with increasing sample pressure, for example, of 1,1,2,2‐tetrafluoroethane, indicates that collisional stabilization of excited fluoroethane molecules competes with the process of HF elimination. High G values for HF and CO2 in mixtures of CF2CFH and O2 reveal the occurrence of a chain reaction.
Ion-molecule reaction mechanisms: Thermal energy gas phase reactions of 12C+ and 13C+ ions with CH4, C2H4, C2H6, C3H6, C3H8, and CD3CH2CD3 J. Chem. Phys. 65, 2574 (1976 10.1063/1.433444 Equilibrium studies of gas phase ion-molecule reactions. Ion cyclotron resonance results for the reaction CO2H+ + CH4 ? CH5 + + CO2A mass spectrometric study of ionic reactions in CH.-CF 4 and C,H 6 --CF 4 mixtures was undertaken at pressures as high as 0.52 torr. It was found that CFj ions react in a hydride transfer process with ethane with a rate constant of 3.3X 10-10 cm 3 molecule-I.s-I . A rate constant of 1.6X 10-10 cm' molecule -I·S -I was determined for the reaction of C,Ht ions with C,H 6 • In mixtures of CH. and CF 4 , both CHj and CHt react with CF 4 , apparently by fluoride ion transfer. for which we calculated rate constants of 8.6 X 10-10 and 2.3 X 10-10 cm' molecule-I·s-I • respectively. CFt ions do not attack molecular methane. There is good agreement with published rate constants for the disappearance of CHi. CHj. and CHt ions in pure methane. However we observed a decreasing CHi yield above 0.1 torr which may be due either to impurities or to excess energy in CHt ions as a result of a relatively high repeller field strength within the ion source in our experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.