[1] When the interplanetary magnetic field (IMF) is southward, most of the ionospheric potential is generated by merging between the IMF and the magnetospheric field. Typically, the ionospheric potential responds linearly to the magnitude of the southward IMF. However, when the IMF magnitude is large, the ionospheric potential saturates and it becomes relatively insensitive to further increases in the IMF magnitude. We present evidence from simulations that under purely southward IMF conditions, the value of the portion of the potential due to reconnection is controlled by the divergence of the magnetosheath flow, which determines the geoeffective length in the solar wind. Typically, the gradient in the plasma pressure controls the magnetosheath flow, so as the southward IMF increases in magnitude, the change in the magnetosheath force balance is negligible, the geoeffective length in the solar wind does not change, and the reconnection potential increases linearly with the magnitude of the IMF. However, when the IMF magnitude increases to the point where J × B becomes the dominant force in the magnetosheath, further increases in IMF magnitude do affect the overall force balance, diverting more flow away from the merging line, decreasing the geoeffective length, and limiting the global merging rate. Thus magnetosheath force balance can be seen as a single organizing factor that regulates the geoeffective length in the solar wind for the entire range of solar wind parameters.
OVATION Prime (OP) is an auroral precipitation model parameterized by solar wind driving.Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦ MP /dt) which predicts auroral power significantly better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each magnetic latitude (MLAT) × magnetic local time (MLT) bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input-as indeed they do. We here introduce OVATION Prime-2013, an upgrade to the 2010 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦ MP /dt > 1.2 MWb/s which roughly corresponds to Kp = 5+ or 6À). The range of validity is approximately 0 < dΦ MP /dt ≤ 3.0 MWb/s (Kp about 8+). Other upgrades include a reduced susceptibility to salt-and-pepper noise, and smoother interpolation across the postmidnight data gap. The model is tested against an independent data set of hemispheric auroral power from Polar UVI. Over the common range of validity of OP-2010 and OP-2013, the two models predict auroral power essentially identically, primarily because hemispheric power calculations were done in a way to minimize the impact of OP-2010s noise. To quantitatively demonstrate the improvement at high disturbance levels would require multiple very large substorms, which are rare, and insufficiently present in the limited data set of Polar UVI hemispheric power values. Nonetheless, although OP-2010 breaks down in a variety of ways above Kp = 5+ or 6À, OP-2013 continues to show the auroral oval advancing equatorward, at least to 55°MLAT or a bit less, and OP-2013 does not develop spurious large noise patches. We will also discuss the advantages and disadvantages of other precipitation models more generally, as no one model fits best all possible uses.
We investigate the energetics of magnetic storms associated with corotating interaction regions (CIRs). We analyze 24 storms driven by CIRs and compare to 18 driven by ejecta-related events to determine how they differ in overall properties and in particular in their distribution of energy. To compare these different types of events, we look at events with comparable input parameters such as the epsilon parameter and note the properties of the resulting storms. We estimate the energy output by looking at the ring current energy along with ionospheric Joule heating derived from the PC and Dst indices. We also include the energy of auroral precipitation, estimated from NOAA/TIROS and DMSP observations. In general, ejecta-driven storms produce more intense events, as parameterized by Dst*, but they are usually not as long lasting, and in most cases deposit less energy. This is observed even for events that have similar input quantities, such as epsilon. This may be related to the high speed of the solar wind, in that an increased magnetosonic Mach number may influence the reconnection rate and therefore the coupling. Additionally, we find the efficiency of the coupling varies greatly from CIR-driven to ejecta-driven storms, with the CIRdriven storms coupling substantially more efficiently, particularly in the recovery phase. The efficiency of coupling (output energy divided by input energy) for CIRdriven storms in recovery phase was double that of ejecta-driven storms. 113 estimated by looking at the solar wind input and the corresponding magnetospheric output for a particular time period. The question becomes, then, how does one quantify the solar wind input and the magnetospheric output? Solar wind input has been parameterized in several key ways over the years, usually in the form of a Poynting flux, and this remains the most widespread estimate. Magnetospheric output, however, is less clear-cut. Some use widely known magnetospheric activity indices such as Dst or Kp to estimate the response to solar wind drivers. Other researchers may be more interested in the radiation belt response, for example, and have different
Most measures of magnetospheric activity-including auroral power (AP), magnetotail stretching, and ring current intensity-are best predicted by solar wind-magnetosphere coupling functions which approximate the frontside magnetopause merging rate. However radiation belt fluxes are best predicted by a simpler function, namely the solar wind speed, v. Since most theories of how these high energy electrons arise are associated with repeated rapid dipolarizations such as associated with substorms, this apparent discrepancy could be reconciled under the hypothesis that the frequency of substorms tracks v rather than the merging ratedespite the necessity of magnetotail flux loading prior to substorms. Here we investigate this conjecture about v and substorm probability. Specifically, a continuous list of substorm onsets compiled from SuperMAG covering January 1, 1997 through December 31, 2007 are studied. The continuity of SuperMAG data and near continuity of solar wind measurements minimize selection bias. In fact v is a much better predictor of onset probability than is the overall merging rate, with substorm odds rising sharply with v. Some loading by merging is necessary, and frontside merging does increase substorm probability, but nearly as strongly as does v taken alone. Likewise, the effects of dynamic pressure, p, are smaller than simply v taken by itself. Changes in the solar wind matter, albeit modestly. For a given level of v (or B z), a change in v (or B z) will increase the odds of a substorm for at least 2 h following the change. A decrease in driving elevates substorm probabilities to a greater extent than does an increase, partially supporting external triggering. Yet current v is the best single predictor of subsequently observing a substorm. These results explain why geomagnetically quiet years and active years are better characterized by low or high v (respectively) than by the distribution of merging estimators. It appears that the flow of energy through the magnetosphere is determined by frontside merging, but the burstiness of energy dissipation depends primarily on v.
[1] For low values of the solar wind electric field, the response of the polar cap potential is essentially linear, but at high values of VB s , the polar cap potential saturates and does not increase further with increasing VB s . On the other hand, the ring current injection rate does increase linearly with VB s and shows no evidence of saturating. If enhanced convection is the origin of the ring current, this poses a paradox. How can the polar cap potential, and thus convection, saturate when the ring current does not? We examine a possible explanation based on the reexamination of the Burton equation by Vasyliunas (2006). We show that this explanation is not a viable solution to the paradox since it would require a changing polar cap flux, and we demonstrate that the polar cap flux saturates (at around 1 GWb) as the polar cap potential saturates. Instead, we argue that during storms a quasi-steady reconnection region forms in the tail near the Earth. This reconnection region moves closer to the Earth for higher values of solar wind B s , although the polar cap potential, the dayside merging and nightside reconnection rates, and the amount of open flux do not change much as a function of B s once the polar cap potential has become saturated. As the neutral line moves closer, the volume per unit magnetic flux in the closed field line region is less. Flux tubes leaving the reconnection region in general have lower PV g as B s increases, and lower PV g flux tubes can penetrate deeper into the inner magnetosphere, leading to a corresponding greater injection of particles into the inner magnetosphere. Thus a reconnection region that is closer to Earth is more effective in creating a strong ring current. This leads to a continued dependence of the ring current injection rate on VB s , although the polar cap potential has saturated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.