Results of injection of autologous bone marrow mesenchymal stem cells with transfected GFP gene into the rat uterine horn cicatrix were studied by light microscopy. Large groups of blood vessels with blood cells inside were seen after injection of autologous bone marrow cells into the cicatrix on the right horn, formed 2 months after its ligation; no groups of vessels of this kind were found in the cicatrix in the contralateral horn. Examination of unstained sections in reflected UV light showed sufficiently bright fluorescence in the endothelium and outer vascular membrane in the uterine horn cicatrix only on the side of injection. Hence, autologous mesenchymal stem cells injected into the cicatrix formed the blood vessels due to differentiation into endotheliocytes and pericytes. The expression of GFP gene not only in the vascular endothelium, but also in vascular outer membranes indicated that autologous mesenchymal stem cells differentiated in the endothelial and pericytic directions.
The results of injecting of autologic mesenchymal stem cells of bone marrow origin (AMSCBMO), transfected by the GFP gene, into the scar of rat uterine horns were studied by methods of light microscopy. After the introduction of AMSCBMO into the formed scar on the right (2 months after the ligation) large groups of blood vessels with cellular elements inside were present; groups like that were not found in the opposite side. Studying unstained sections under reflected ultraviolet light the sufficient bright luminescence in the endothelium and the external membrane of scar vessels was found in uterine horn only on the side of introduction of AMSCBMO. It was concluded that after the introduction of AMSCBMO into the scar tissue they form blood vessels by differentiation into endotheliocytes and pericytes. GFP gene expression not only in endothelium of vessels, but also in their external membrane indicates that differentiation of AMSCMBO is possible in endothelial and in pericytal directions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.