In order to understand the factors influencing the isotopic composition of air above and within plant canopies, equations quantifying the effects of photosynthesis, respiration and turbulent transport on the isotopic composition of the surrounding CO2 are developed. These equations are then extended to the regional scale, allowing the average isotopic composition of CO2 within the convective boundary layer to be related to the isotopic composition of tropospheric CO2, and to isotopic fractionations during ecosystem carbon exchange. Equations presented have the potential to be inverted, allowing direct estimation of isotopic fractionations by vegetation at the local and regional scales. Equations allowing the estimation of the extent of refixation of respired CO2 ('recycling') at the regional scale are also presented. Using measurements of CO2 carbon isotopic composition in conjunction with ecosystem flux measurements, the theory is applied to a tropical rain forest in Amazonia and a boreal forest in Siberia. When examined on a ground area basis and over the course of a day it is observed that, by virtue of greater fluxes but similar isotopic fractionations, the tropical rainforest exerts much more influence over the isotopic composition of the surrounding air than does the boreal forest. Due to higher rates of ecosystem respiration, recycling of respired CO2 is modelled to be much greater for tropical rainforest, but values presented here are considerably lower than previously published estimates, the latter being based solely on the relationship between the isotopic composition and concentrations of CO2 within forest canopies. The reasons for these differences are examined.
Abstract. A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an emission model assuming a direct relationship between the biomass burning rate (BBR) and the fire radiative power (FRP) derived from MODIS measurements. The key features of the method are (1) estimating the FRP-to-BBR conversion factors (α) for different vegetative land cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) optimal combination of the estimates of α derived independently from satellite observations of different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire emissions directly from the FRP measurements. Values of α for forest and grassland fires in Siberia and their uncertainties are estimated using the Infrared Atmospheric Sounding Interferometer (IASI) carbon monoxide (CO) retrievals and MODIS aerosol optical depth (AOD) measurements combined with outputs from the CHIMERE mesoscale chemistry-transport model. The constrained CO emissions are validated through comparison of the respective simulations with independent data of ground-based CO measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion factors (which are found to be in agreement with earlier published estimates obtained from local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 2012 are estimated to be in the range from 280 to 550 Tg C, with the optimal (maximum likelihood) value of 392 Tg C. Sensitivity test cases featuring different assumptions regarding the injection height and diurnal variations of emissions indicate that the derived estimates of the total CO2 emissions in Siberia are robust with respect to the modeling options (the different estimates vary within less than 15% of their magnitude). The CO2 emission estimates obtained for several years are compared with independent estimates provided by the GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia are by factors of 2.5 and 1.8 larger than the respective bottom-up estimates; these discrepancies cannot be fully explained by uncertainties in our estimates. There are also considerable differences in the spatial distribution of the different emission estimates; some of those differences have a systematic character and require further analysis.
We present a first analysis of data (June 1998 to December 2000) from the long-term eddy covariance site established in a Pinus sylvestris stand near Zotino in central Siberia as part of the EUROSIBERIAN CARBONFLUX project. As well as examining seasonal patterns in net ecosystem exchange (N E), daily, seasonal and annual estimates of the canopy photosynthesis (or gross primary productivity, G P) were obtained using N E and ecosystem respiration measurements. Although the forest was a small (but significant) source of CO 2 throughout the snow season (typically mid-October to early May) there was a rapid commencement of photosynthetic capacity shortly following the commencement of above-zero air temperatures in spring: in 1999 the forest went from a quiescent state to significant photosynthetic activity in only a few days. Nevertheless, canopy photosynthetic capacity was observed to continue to increase slowly throughout the summer months for both 1999 and 2000, reaching a maximum capacity in early August. During September there was a marked decline in canopy photosynthesis which was only partially attributable to less favourable environmental conditions. This suggests a reduction in canopy photosynthetic capacity in autumn, perhaps associated with the cold hardening process. For individual time periods the canopy photosynthetic rate was mostly dependent upon incoming photon irradiance. However, reductions in both canopy conductance and overall photosynthetic rate in response to high canopy-to-air vapour differences were clearly evident on hot dry days. The relationship between canopy conductance and photosynthesis was examined using Cowan's notion of optimality in which stomata serve to maximise the marginal evaporative cost of plant carbon gain. The associated Lagrangian multiplier (λ) was surprisingly constant throughout the growing season. Somewhat remarkably, however, its value was markedly different between years, being 416 mol mol −1 in 1999 but 815 mol mol −1 in 2000. Overall the forest was a substantial sink for CO 2 in both 1999 and 2000: around 13 mol C m −2 a −1. Data from this experiment, when combined with estimates of net primary productivity from biomass sampling suggest that about 20% of this sink was associated with increasing plant biomass and about 80% with an increase in the litter and soil organic carbon pools. This high implied rate of carbon accumulation in the litter soil organic matter pool seems unsustainable in the long term and is hard to explain on the basis of current knowledge.
[1] Twenty tree ring 13 C/ 12 C ratio chronologies from Pinus sylvestris (Scots pine) trees were determined from five locations sampled along the Yenisei River, spaced over a total distance of $1000 km between the cities of Turuhansk (66°N) and Krasnoyarsk (56°N). The transect covered the major part of the natural distribution of Scots pine in the region with median growing season temperatures and precipitation varying from 12.2°C and 218 mm to 14.0°C and 278 mm for Turuhansk and Krasnoyarsk, respectively. A key focus of the study was to investigate the effects of variations in temperature, precipitation, and atmospheric CO 2 concentration on long-and shortterm variation in photosynthetic 13 C discrimination during photosynthesis and the marginal cost of tree water use, as reflected in the differences in the historical records of the 13 C / 12 C ratio in wood cellulose compared to that of the atmosphere (D 13 C c ). In 17 of the 20 samples, trees D 13 C c has declined during the last 150 years, particularly so during the second half of the twentieth century. Using a model of stomatal behaviour combined with a process-based photosynthesis model, we deduce that this trend indicates a long-term decrease in canopy stomatal conductance, probably in response to increasing atmospheric CO 2 concentrations. This response being observed for most trees along the transect is suggestive of widespread decreases in D 13 C c and increased water use efficiency for Scots pine in central Siberia over the last century. Overlying short-term variations in D 13 C c were also accounted for by the model and were related to variations in growing season soil water deficit and atmospheric humidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.